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ABSTRACT

The free electron laser (FEL) is proposed to meet the Navy's need for a speed-

of-light high energy laser weapon capable of engaging a variety of targets including

anti-ship cruise missiles, small boats, and theater ballistic missiles. A key attribute

of FELs is good optical beam quality; in other words, they operate in only a few of

the lowest-order transverse Gaussian modes. For weapons applications, a good mode

quality is desired because it delivers the highest intensity on target ensuring a high

level of lethality. A few higher-order modes can arise from the interaction of the

electron beam with the optical beam, or from misalignments of the electron beam or

resonator mirrors. High intensity on FEL optics can lead to mirror distortion due to

heating and insu�cient cooling of the mirror substrate. Mirror distortions, including

astigmatism, can cause higher-order modes to appear a�ecting FEL performance.

Therefore, it is important to quantify these higher-order modes because doing so

uniquely identi�es the optical �eld and may allow for corrective optics to single out

the best modes for FEL lethality.

This thesis will review free electron laser theory, and for the �rst time develop

analytical solutions to quantify Hermite-Gaussian higher-order modes, develop a di-

agnostic for modal analysis, and determine the tolerance limits on mirror distortions.
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DISCLAIMER

This thesis was created using LATEX2" on an Apple PowerBook G4. For

information LATEX or the code developed for this thesis, please feel free to contact me

at my permanent email address: vigilr@alum.rpi.edu.
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I. MOTIVATION

Previous Naval Postgraduate School (NPS) classroom studies have shown that

the PHALANX close-in weapon system, used onboard US Navy ships as a last tier

self-defense weapon, typically destroys an enemy missile at a distance of a few hundred

meters from the ship. At that distance, NPS classroom studies have also shown a

large probability that debris will cause collateral damage to the ship. A key factor

in determining debris �eld collateral damage is time. An anti-ship cruise missile

(ASCM) typically has a velocity of 1200 m/s. If it is detected at a nominal horizontal

distance1 of 15 km, then the ship has approximately 13 seconds to track and engage

the missile. The probability of collateral damage stems from the fact that it takes

several PHALANX rounds to destroy the missile. So, Naval interest in high energy

lasers is clear: by engaging a target with a speed-of-light high energy laser weapon, the

distance and time-to-engage increases considerably and the probability of collateral

damage to the ship is reduced.

In order to \kill" a missile, about one liter of missile material must be de-

stroyed. This will cause su�cient structural damage resulting in missile breakup.

The amount of energy required for material ablation is on the order of one megawatt

over a surface area of 100 cm2 for a few seconds. If an ASCM, like the one described

above, is detected at 15 km and engaged by a high energy laser, it would be destroyed

in roughly �ve seconds at a distance of 9 km from the ship reducing the probability

of collateral damage considerably giving the ship a large safety margin in time and

distance.

Several U.S. Navy laser programs are currently investigating the feasibility of

employing high energy lasers on board ships. The free electron laser (FEL) possesses

1Horizontal distance as a function of height of eye is given by DE(nautical miles) =
1:169

p
Height of eye (ft)
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many attributes that are in-line with the the Navy's vision of an all-electric ship with

no munitions:

� High average power

� Can be designed over a range of wavelengths (IR through X-rays)

� Good optical beam quality

� High operational reliability

� No hazardous chemicals required for lasing medium

� Virtually limitless magazine depth

� Capable of engaging a variety of targets including ASCMs, small boats, and
theater ballistic missiles

A key attribute of FELs is good optical beam quality; in other words, they operate

in only a few of the lowest-order Gaussian modes. A key attribute of FELs is good

optical beam quality; in other words, they operate in only a few of the lowest-order

transverse Gaussian modes. For weapons applications, a good mode quality is desired

because it delivers the highest intensity on target ensuring a high level of lethality. A

few higher-order modes can arise from the interaction of the electron beam with the

optical beam, or from misalignments of the electron beam or resonator mirrors. High

intensity on FEL optics can lead to mirror distortion due to heating and insu�cient

cooling of the mirror substrate. Mirror distortions, including astigmatism, can cause

higher-order modes to appear a�ecting FEL performance. Therefore, it is important

to quantify these higher-order modes because doing so uniquely identi�es the optical

�eld and may allow for corrective optics to single out the best modes for FEL lethality.

This thesis will review free electron laser theory, and for the �rst time develop

analytical solutions to quantify Hermite-Gaussian higher-order modes, develop a di-

agnostic for modal analysis, and determine the tolerance limits on mirror distortions.
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II. FREE ELECTRON LASER SYSTEM

The free electron laser (FEL) system consists of many di�erent components

each of which involves very interesting physics. Figure 1 shows a basic systems di-

agram of the operating FEL at the Thomas Je�erson National Accelerator Facility

(JLab). Let us walk through the operation of JLab's FEL. A pulsed beam of electrons

in a vacuum is produced using a photoinjector. The beam of electrons are accelerated

to near the speed of light in the superconducting accelerator using radio-frequency

(RF) energy. Highly relativistic electrons are then \wiggled" in the undulator pro-

ducing laser light where it is ampli�ed by extracting energy from the electron beam

within the optical resonator. The electron beam's remaining energy is recycled by

having them enter the superconducting accelerator out of phase with the RF �elds.

Finally, the electron beam is directed to a beam dump.

At the heart of the FEL system are relativistic \free" electrons, i.e., not bound

to any atom or molecule. The electrons travel in a vacuum much like in a cathode ray

tube. Conventional lasers operate at speci�c frequencies because electrons can make

transitions only between discrete energy levels. The electrons of an FEL are forced

to vibrate through a spatial periodic magnetic �eld. The frequency of vibration can

be changed by adjusting the magnetic �eld or by changing the speed of the electrons

which in turn changes the laser light frequency.

In 1970 Dr. John Madey of Stanford University proposed what he termed

a \free electron laser" using highly relativistic electrons to produce radiation in a

magnetic undulator. Six years later Madey succeeded in demonstrating gain with a

free electron laser with a 24 MeV electron beam and 5 m long undulator [2].

As an illustrative example of an operating FEL, Table I shows the current

parameters at JLab. At the time of this writing, JLab has the most powerful free

electron laser in the world at 10 kW. The wavelength is in the infrared around 2 - 4

�m.

3



Figure 1. Free electron laser systems diagram highlighting major components from
[1].

A. HOW DOES IT WORK?

For an FEL to work we need [4]:

� a beam of relativistic electrons,

� co-propagating in an optical �eld,

� through a series of spatially periodic magnets.

The undulator establishes electron oscillations that are transverse to its overall longi-

tudinal motion. In a reference frame moving along the FEL axis with the electrons,

it would appear that they are simply oscillating and radiating in all directions. In the

laboratory frame the radiation is con�ned to a narrow forward cone whose angle is a

function of the electron's speed, and is known as magnetic Bremsstrahlung radiation

[2]. The radiation emitted is highly Doppler shifted due to the relativistic nature of

the electrons and the wavelength is given by

� = �o
(K2 + 1)

22
(II.1)

4



Optical Resonator
Output power 10 kW
Length 32m
Wavelength 1.1�m
Waist radius 0.6 mm
Mode radius at mirror 1 cm
Quality factor 25 (4% outcoupling)
Rayleigh length 0.5 m
Max. intensity permissible on mirrors 200 kW/cm2

Electron Beam
Energy 111 MeV
Bunch charge 135 pC
Radius 0.2 mm
Peak current 340 A
Pulse length 0.12 mm

Undulator
Period, �o 8 cm
Length 2.3
Number of periods 29
Undulator parameter, K 0.55

Table I. JLab FEL Parameters from [3].

where � is the wavelength of the optical radiation, �o is the wavelength of the undu-

lator magnetic �eld,  is the Lorentz factor, K is a dimensionless parameter that is

proportional to the undulator magnetic �eld strength. We will derive this equation

in the next chapter.

The initial optical radiation given o� by the oscillating electrons is known as

spontaneous emission in the vernacular of conventional laser physics. The radiation

from spontaneous emission is incoherent, meaning that, the wave packets emanating

from each radiating electron are not in phase with adjacent wavepackets since each

electron is randomly dispersed within the electron beam. Coherence evolves from this

cacophony through mode competition with many passes through the undulator. The

process of mode competition will be covered later.
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At resonance, the electric �eld felt by the electrons oscillates at the same

frequency and in the same plane as the electrons oscillating through the periodic

undulator magnetic �eld. If the electric �eld and the electron's transverse motion is

parallel, electrons will lose energy and slow down since work is being done by them.

If the electric �eld and the electron's transverse motion is anti-parallel, electrons will

gain energy and speed up since work is being done on them. The energy they lose or

gain comes from the optical radiation �eld. The e�ect of electrons losing and gaining

energy within each optical wavelength is a longitudinal bunching of electrons as some

slow down and others speed up in each wavelength. The bunched electrons then emit

radiation that is in phase and coherent. The intensity of the coherent radiation is

much more powerful than the incoherent radiation [2].

Two key performance metrics of the FEL can now be introduced: extrac-

tion and gain. The fractional increase in optical radiation power in one pass of the

undulator is de�ned as gain,

G =
P � Po
Po

(II.2)

where the optical power, P , is measured at the end of the undulator and Po is the

power at the beginning of the undulator. As the FEL converts electron kinetic energy

to optical radiation energy, the fractional energy extracted from the electron beam in

one pass of the undulator is de�ned as extraction, �,

� =
Optical power

Initial electron beam power
(II.3)

The optical gain must be su�cient to overcome loss and outcoupling. A larger ex-

traction means the FEL requires less average current to achieve high power. Typical

values for extraction and gain are 2% and 30%, respectively.

B. CONFIGURATIONS

When the undulator is bounded within two reective mirrors, the con�gura-

tion is known as an optical oscillator or resonator. The optical radiation �eld that

6



couples to the electron's motion can manifest itself through spontaneous emission.

This radiation is collected within mirrors as shown in Figure 2. A partially reective

outcoupling mirror provides the optical feedback back into the undulator. Coherence

develops through many passes of the optical �eld. The source of the optical radi-

Figure 2. Free electron laser system in an oscillator con�guration from [5].

ation �eld can also be an external laser in the case of an ampli�er. An ampli�er

con�guration makes use of a seed laser and typically a longer undulator. The longer

undulator provides more gain and extraction in a single pass since only one pass is

used. Coherence is established by the seed laser. Figure 3 shows a typical ampli�er

con�guration.

Figure 3. Free electron laser system in an ampli�er con�guration from [5].
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C. COMPONENTS

1. Source

Figure 4. Schematic of a typical photoinjector from [6].

An FEL requires high peak current in order for coherent radiation to grow in

amplitude. The source for free electrons is a photoinjector. A drive laser, usually

a solid-state laser, is pulsed at a photocathode target. Through the photoelectric

e�ect, electrons are literally blasted from the surface of a cathode and accelerated in

an electric �eld to the linear accelerator. Since the drive laser �res at regular intervals

(on the order of nanoseconds), electrons travel in pulses. Electrons at the terminus

of the photoinjector have energies from 5 to 10 million electron-volts (MeV).

2. Accelerator

The linear accelerator (see Figure 5) has two functions: (1) accelerate electrons

from the photoinjector to its �nal velocity (energy � 100 MeV), and (2) recover

energy from recycled electrons. The electrons are accelerated as they travel through

the cavities in phase with the radio-frequency (RF) �elds. At JLab, electron bundles

from the photoinjector are accelerated using a superconducting RF linear accelerator

to minimize waste heat. Energy is recovered from recycled electrons and given back

to the RF �eld since they reenter the accelerator out of phase with the RF �eld.

8



Figure 5. JLab linear accelerator from [7]

3. Undulator

The undulator is a collection of spatially alternating permanent magnets that

causes the electrons to wiggle transverse to their longitudinal motion. The transverse

motion then couples to the optical electric �eld enabling work to be done on or by the

optical radiation �eld. The magnets can be orientated linearly or helically as shown

in Figure 6. Linear undulators produce linearly polarized light whose electric �eld

oscillates in the same plane as the oscillating electrons. Helical undulators produce

circularly polarized light whose electric �eld rotates along with the electrons enabling

a coupling to occur.

4. Beam Dump

After energy is recovered from the recycled electrons in the linear accelerator,

the electron beam is steered into a beam dump (see Figure 7). A beam dump is

nothing more than a piece of notched metal that will absorb the remaining kinetic

energy of the electron beam (on the order of several MeV). At at an average electron

beam current of one ampere, about one megawatt must be absorbed. It is water-

cooled on the non-vacuum side.

9



Figure 6. (a) Helical undulator resulting in circularly polarized light. (b) Linear
undulator resulting in linearly polarized light from [8].

5. Optics

As mentioned in Table I, the maximum permissible intensity on the resonator

mirrors is on the order of 200 kW/cm2 to prevent mirror damage to the mirror's

dielectric layers. In adequate or nonuniform mirror cooling may also warp the sapphire

substrate thereby a�ecting FEL performance. FEL designs with a short Rayleigth

length1 have modes that expand so that the intensity on the mirrors is lessened. The

entire optical system includes all the necessary beam directors to place laser energy

on a target miles away from the ship.

1Rayleigh length is the distance the mode has to travel longitudinally from the waist so that the
mode area doubles. Rayleigh length will be discussed in greater detail in Chapter IV.
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Figure 7. Beam dump from [9]
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III. FREE ELECTRON LASER THEORY

We will now develop in detail the mathematics that describes the operation

of the free electron laser. In order to produce laser light we must cause electrons to

oscillate through a Lorentz force interaction, bunch the electrons spatially for coher-

ence, and �nally, have su�cient electron-to-optical mode coupling for ampli�cation

and gain.

A. EQUATIONS OF MOTION

1. Relativistic Lorentz Force

In compact covariant notation, the relativistic Lorentz Force law1 is

dp�

dt0
= m

dU�

dt0
= �e

c
F��U� (III.1)

where p� = (mc;p) is the four-momentum,  = 1=
p
1� v2=c2 is the Lorentz factor,

v is the electron's velocity, m is the mass of the electron, U� = (c;�v) is the

electron's four-velocity, t0 = t= is proper time, e is the magnitude of the electron's

charge, c is the speed of light, and F�� is the �eld-strength tensor with the components

of the electric �eld, E, and magnetic �eld, B. Speci�cally,

F�� =

0
BBBBBB@

0 �Ex �Ey �Ez

Ex 0 �Bz By

Ey Bz 0 �Bx

Ez �By Bx 0

1
CCCCCCA (III.2)

Let us describe the electron's trajectory in a helical undulator whose magnetic �eld

along z is

Bu = Bo(cos koz; sin koz; 0) (III.3)

where Bo is the magnetic �eld amplitude, ko = 2�=�o is the undulator wavenumber,

and �o is the undulator wavelength, i.e., the distance for one complete cycle of the

1[10], Chapter 11
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undulator magnetic �eld. The corresponding electric and magnetic �eld of the optical

radiation �eld is:

Er = Eo(cos ;� sin ; 0) (III.4)

Br = Eo(sin ; cos ; 0) (III.5)

where  = kz � !t + �, k is the optical wavenumber, ! = kc is the optical angular

frequency, Eo is the �eld amplitude in cgs units, and � is the optical phase.

If we combine Equations (III.3), (III.4), and (III.5), Equation (III.2) becomes

F�� =

0
BBBBBB@

0 �Eo cos� Eo sin� 0

Eo cos 0 0 Bo sin koz + Eo cos�

�Eo sin 0 0 �Bo cos koz � Eo sin�

0 �Bo sin koz � Eo sin Bo cos koz + Eo sin 0

1
CCCCCCA

(III.6)

Using Equations (III.1), (III.6), and

� =
v

c
(III.7)

 =
1p

1� �2
(III.8)

where � is dimensionless velocity and  is the Lorentz factor. We can write down the

spatial components of the force from Equation (III.1),

d(�?)

dt
= � e

mc
[Eo(1� �z)(cos ;� sin ; 0) + �zBo(� sin koz; cos koz; 0)]

d(�z)

dt
= � e

mc
[Eo(�x cos � �y sin ) +Bo(�x sin koz � �y cos koz)] (III.9)

where we have made use of �? = �x{̂+�y|̂. Since �z � 1, (1��z)! 0, we then drop

the terms proportional to Eo(1 � �z) compared to �zBo. Integrating the transverse

equation gives (assuming perfect injection2)

�? =
�eBo

mc2ko
(cos koz; sin koz; 0) =

�eBo�o
2�mc2

(cos koz; sin koz; 0) (III.10)

2Perfection injection means that the electrons enter the undulator at precisely the correct angle
such that its motion is exactly given by Equation (III.10) and constants of integration are zero.
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We can clean this equation up a little if we identify the dimensionless undulator

parameter, K = eBo�o=(2�mc
2) to write:

�? =
�K


(cos koz; sin koz; 0) (III.11)

We can now derive the energy exchange equation between the electrons and

the optical �eld. With Equation (III.2), dt0 = dt= and p0 = E=c = mc, from rela-

tivistic kinematics3, we can write down the zeroth component, or energy component,

of Equation (III.1). For � = 0, we have

dp0

d�
= �e

c
F 0�U�

so that


d

dt
(mc) = �e

c
(0;�E) � (c;�v)

and


d

dt
(mc) = �e

c
E � v

giving

d

dt
= � e

mc
� � E (III.12)

Equation (III.12) describes how the the electron exchanges energy with the optical

�eld. The electron's total energy, E = mc2, is a function of its rest mass and its

speed (through ). The undulator sets up electron motion in the transverse directions

otherwise � � E would be zero.

Substituting Equations (III.4) and (III.11) into (III.12), we arrive at

�
=

eKEo

mc
cos(koz +  ) (III.13)

3see [11], Chapter 1
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Recall that  = kz � !t+ �. If we de�ne

� � (ko + k)z � !t (III.14)

as the electron phase, we have

�
=

eKEo

mc
cos(� + �) (III.15)

We have arrived at an expression that describes energy exchange between the electron

and optical �eld. Electron phase, �, is another way of describing the electron's position

along the undulator axis with respect to the co-propagating optical wave. Notice that

for cos(� + �) > 0, the electron energy increases (absorption); for values less than

zero, the electron loses energy (stimulated emission).

2. Resonance Condition and Dimensionless Variables

Introduced

Since the electron phase, �, is proportional to the electron position, z, let us

de�ne the dimensionless electron phase velocity as

� �
�
� L=c (III.16)

where L is the length of the undulator. We can normalize the evolution of the

electron's motion to the length of the undulator by de�ning a dimensionless time,

� = ct=L. It is convenient when possible to normalize our equations on scales that

are relevant to the physics being explored. For example, longitudinal length can be

normalized to the length of undulator. Thus, � takes on values from 0! 1 from the

beginning of the undulator to the end of the undulator. In the following sections, we

will normalize transverse directions, optical �eld amplitude, and current density.

Returning to phase velocity, � can also be expressed as

� =
�
� (III.17)

where ( �: : :) = d(: : :)=d� is a derivative with respect to dimensionless time � . Phase

velocity, �, is a measure of how fast the electron is moving longitudinally within an

undulator period. We can now derive the resonance condition.
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The resonance condition results in optimum energy exchange between the elec-

tron and the optical mode. This occurs when one wavelength of light passes over an

electron as the electron travels through one undulator period. FEL resonance occurs

when � = 0. Taking the time derivative of the electron phase gives us

� = (ko + k)z � !t
�
� = (ko + k)�zc� ! (III.18)

Substituting this expression into the de�nition of electron phase velocity gives us

� = [(ko + k)�zc� !]
L

c
(III.19)

For � = 0, we have

k =
ko�z

(1� �z)

so that � = �o
(1� �z)

�z
(III.20)

where we have used k = !=c. So now let us �nd an expression for �z in terms of

physical parameters of the FEL. From Equation (III.11), �? = K=, and the de�nition

of the Lorentz factor, we have

 =
1p

1� �2

2 =
1

1� �2
? � �2

z

2 =
1

1� K2

2
� �2

z

(III.21)

Solving for the electron velocity gives us

�z =

r
1� 1

2
(K2 + 1) (III.22)
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For highly relativistic electrons employed in an FEL,  is typically � 100, so we can

make use of the binomial expansion4 giving us

�z =

r
1� 1

2
(K2 + 1)

�z � 1� 1

22
(K2 + 1) (III.23)

Returning to Equation (III.20), we then have,

� = �o
(K2 + 1)

22
(III.24)

Here is an expression for the wavelength of the optical mode based on physical pa-

rameters that we can change (�o, K, ): a clear example of the FEL's tunability. It

is now understandable why the wavelength of the light is so much smaller (by a factor

of 1=2) than the undulator period. This is physically plausible since the relativistic

nature of the electrons causes them to see the undulator Lorentz-contracted by a

factor of  and Doppler-shifted light from the electrons' frame is then transformed to

the lab frame reducing the wavelength by another factor of . Electrons see resonant

forces from undulator and the optical �eld. The end result is the optical �eld is at a

much higher frequency then the undulator's spatial frequency.

3. Pendulum Equation

We are now in a position to recast the equations in the previous sections into

a form known as the pendulum equation. In this pendulum description, phase-space

plotting becomes a natural and highly illustrative way of describing the electrons'

motion and interaction with the optical mode. Starting with the phase velocity, we

4The binomial expansion for small x is given by

(1 + x)n = 1 + nx+
n(n� 1)

2!
x2 + � � �

see [12] pp. 14 for more details
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have

� = [(ko + k)�z � k]L =
�
� (III.25)

�
� = (ko + k)

�
�z L (III.26)

So let us now calculate an expression for
�
�z. From Equation (III.23),

�z � 1� 1

22
(K2 + 1)

�
�z = �1

2
(�2)�3d

dt
(K2 + 1) (III.27)

�
�z =

�


3
(K2 + 1) (III.28)

But near resonance we have (K2 + 1)=2 = 2�=�o, so Equation (III.28) becomes

�
�z =

�




(K2 + 1)

2

�
�z =

�




2�

�o
(III.29)

Returning to Equation (III.26), substituting Equation (III.29), and using k = 2�=�,

we arrive at

�
� = (ko + k)

�




2�

�o
L (III.30)

�
� =

4��

�2o

�



L+

4�

�o

�



L (III.31)

We can make the following substitutions and approximations: since the undulator

period is much larger than the optical wavelength (i.e, �o >> �), and since the �rst

term is smaller than the second by a factor �=�o, the �rst term is negligible. We de�ne

jaj = 4�NeKjEjL=2mc2 as the dimensionless optical �eld amplitude, L = N�o, the

length of the undulator, dt = Ld�=c, and substituting Equation (III.15), we �nally

arrive at
�
�= jaj cos(� + �) =

��
� (III.32)

The pendulum equation describes the motion of the electrons in phase space, (�; �).
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4. Phase Space

Phase space diagrams are used in many physical problems. For example, in a

simple pendulum, the angular displacement, �(t), and its angular velocity, �(t), can

be thought of coordinates of a two-dimensional phase space. As the motion of the

pendulum evolves, the point given by (�; �) will move along a path in phase space.

For di�erent initial conditions, the motion will be described by di�erent paths. Phase

space plots can be divided into two categories: closed orbit or open orbit paths.

For the pendulum, closed orbit paths result when the pendulum is bound

about the stable �xed point. Open orbit paths occur when there is a large enough

angular velocity to cause the pendulum to go over the top.

Figure 8. Various phase-space paths for a simple pendulum. The thin green curves
are examples of closed orbits. The dotted red curves are examples of open orbits.
The separatrix is the heavy dark curve.

Figure 8 illustrates the phase space paths of a simple pendulum for 10 di�erent
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initial conditions. The phase space paths are given by5

�2 = �2o + 2(cos � � cos �o) (III.33)

The separatrix is found when �o = � and �o = 0 in Equation (III.33) giving us

�2 = 2(cos � + 1) (III.34)

The separatrix separates locally bounded motion from locally unbounded motion and

passes through the unstable �xed point (�o = �; �o = 0).

Equation (III.32) is equivalent to the simple pendulum if jaj and � are constant,
as is approximately the case for low gain in the FEL. The electron phase, �, can be

viewed as the electron's position within an undulator period while a change in phase

velocity is proportional to the electron's energy (recall
�
�/ �

=). The dimensionless

optical �eld amplitude, jaj, is a measure of the �eld strength. A larger jaj causes
the phase space paths to evolve much faster (analogous to a larger

p
g=l for the real

pendulum). A larger jaj also causes the separatrix to increase in size (along �). The

FEL separatrix is given by [13]:

�2 = 2jaj[1 + sin(� + �)] (III.35)

Figure 9 shows the evolution of 1000 electrons in phase space all with an initial

�o = 0 (on resonance) and jaj = 1. Notice that half the electrons gained energy from

the optical �eld (increasing values of �) and half the electrons lost energy to the

optical �eld (decreasing values of �). Notice how the electrons are becoming bunched

along �. Since there are an equal number of electrons gaining and losing energy, the

overall gain is zero. Gain is the fractional change in the power of the optical �eld

5Dimensionless pendulum equation given by
��

�= � sin �. Multiply both sides by � to get �
�

�=
�� sin �, which is equivalent to d[�2=2� cos �]=dt = 0, giving us Equation (III.33).
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Figure 9. Phase space evolution for 1000 electrons with all with initial � = 0.

over a pass through the undulator. In symbols, we write:

G =
P � Po
Po

(III.36)

and

P = jaj2 (III.37)

where the power, P is measured at the end of the undulator and Po is the power at

the beginning of the undulator. We will discuss gain in detail in the next section.

In Figure 10, we start out with an initial �o = 1:5 and jaj = 5:0. There is

an imbalance in the number of electrons that are gaining and losing energy from the

optical �eld. In this particular case, there is a clear bunching of electrons near � = �

resulting in gain.

B. ELECTRON BEAM AND OPTICAL FIELD INTER-

ACTION

In the previous section, we derived the FEL pendulum equation which tells us

the phase space evolution of electrons in an undulator period. Phase space evolutions

that ended with good bunching at the appropriate phase resulted in gain (see Figure
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Figure 10. Phase space evolution for 1000 electrons all with initial � = 1:5.

10). The upper picture of Figure 11 illustrates bunching in an optical wavelength for

Figure 11. In the upper picture, electrons have an initial �o = 0 which results in
bunching but no gain. In the lower picture, electrons have a an initial �o > 0 resulting
in good bunching and positive gain from [4].

�o = 0 or on-resonance case. At time t1 the electrons start out evenly spaced within

a section of the electron beam one wavelength of light long. At time t2, the electrons'

positions have evolved so that the number of electrons which give energy to the optical

�eld (gain) equals the number of electrons which take energy from the optical �eld

(absorption). The result is zero net gain but good bunching. In the lower picture, at

23



time t1 evenly spaced electrons have an initial non-zero phase velocity, i.e. � > 0. At

time t2 the electrons' positions have evolved so that there are more electrons giving

energy to the optical �eld than absorbing it. The result is positive gain, i.e., the

optical �eld grows.

1. Maxwell's Equations

Let us quantitatively describe the interaction between the electron beam and

the optical �eld. We begin with Maxwell's Equations in cgs units6:

r � E = 4�� (III.38)

r �B = 0 (III.39)

r� E = �1

c

@B

@t
(III.40)

r�B =
4�

c
J+

1

c

@E

@t
(III.41)

where � is the charge density, E is the electric �eld, B is the magnetic �eld, and J

is the current density. Equation (III.39) automatically implies that B is the curl of

some other vector, A, the magnetic vector potential7. We then have

r �B = 0) B =r�A (III.42)

If we substitute Equation (III.42) into Equation (III.40) we get

r� E = �1

c

@

@t
(r�A)

r� E+
1

c

@

@t
(r�A) = 0

r�
�
E+

1

c

@A

@t

�
= 0

Recall from elementary vector calculus, if the curl of some vector is zero, then that

vector is equal to minus the gradiant of a scalar8, �, the electric potential. We can

6see [10], Chapters 6 and 11

7[14], Chapter 5

8Ibid
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then write

r�
�
E+

1

c

@A

@t

�
= 0) E+

1

c

@A

@t
= �r�

Therefore,

E = �r�� 1

c

@A

@t
(III.43)

Equations (III.42) and (III.43) describe the electromagnetic radiation in terms of their

potentials, A and �. If we substitute them into Equation (III.41) we arrive at9

r�r�A =
4�

c
J+

1

c

@

@t

�
�r�� 1

c

@A

@t

�

r(r �A)�r2A =
4�

c
J� 1

c
r(

@�

@t
)� 1

c2
@2A

@t2

r
2A� 1

c2
@2A

@t2
�r

�
r �A+

1

c

@�

@t

�
= �4�

c
J (III.44)

For completeness, if we substitute Equation (III.43) into Equation (III.38) we get

r �
�
�r�� 1

c

@A

@t

�
= 4��

r
2� +

1

c

@

@t
(r �A) = �4�� (III.45)

Equations (III.44) and (III.45) fully describes the optical �eld. By a judicious choice

of Coulomb gauge, r �A = 0, Equation (III.44) becomes the full wave equation in

terms of transverse current10

r
2A� 1

c2
@2A

@t2
= �4�

c
J? (III.46)

We will use this equation to determine the electron beam to optical mode interaction.

2. FEL Wave Equation

For our helical undulator given by Equation (III.3), a solution to

r
2A� 1

c2
@2A

@t2
= �4�

c
J? (III.47)

9Vector Identity 8, [14]

10[10], Chapter 6
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can be written as

A(x; t) =
E(x; t)

k
�̂ei� (III.48)

where E(x; t) is the complex optical amplitude, � = kz � !t is the carrier wave,

{̂ = (�i; 1; 0) is optical �eld's polarization vector for circularly polarized light, and

x = x{̂+ y|̂+ zk̂ is the position vector. Substituting Equation (III.48) into (III.47),

we get the following
@2A

@x2
=

�̂ei�

k

@2E

@x2
(III.49)

@2A

@y2
=

�̂ei�

k

@2E

@y2
(III.50)

@2A

@z2
=

�̂ei�

k

�
@2E

@z2
+ 2ik

@E

@z
� k2E

�
(III.51)

@2A

@t2
=

�̂ei�

k

�
@2E

@t2
� 2i!

@E

@t
� !2E

�
(III.52)

For a laser beam, we can make a few simpli�cations. If we assume that optical wave

amplitude and phase are slowly varying along the z axis, second derivatives in z and t

can be dropped compared to �rst derivatives. Substituting these back into Equation

(III.47) and using ! = kc, we arrive at

�̂ei�

k

�
r

2

?
+ 2ik

�
@

@z
+
1

c

@

@t

��
E = �4�

c
J? (III.53)

where r2

?
= @2=@x2 + @2=@y2 is the transverse Laplacian operator. We can simplify

the expression further by a change of coordinates, u = z�ct, which follows the light11,
and recalling dimensionless time, � = ct=L, then

@

@z
=

@u

@z

@

@u
+
@�

@z

@

@�
=

@

@u
@

@t
=

@�

@t

@

@�
+
@u

@t

@

@u
=
c

L

@

@�
� c

@

@u

so that,
@

@z
+
1

c

@

@t
=

@

@u
+
1

c

�
c

L

@

@�
� c

@

@u

�
=

1

L

@

@�
(III.54)

11Coordinate transformation is also known as method of characteristics. See [15]
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We have e�ectively collapsed z and t into one variable � . Multiplying Equation

(III.53) by k�̂�ei�, making use of Equation (III.54), and �̂� � �̂ = 2, we now have�
r

2

?
+ 2ik

�
1

L

@

@�

��
E = �2�k

c
e�i�J? � �̂� (III.55)

We can express the electron current density as a sum over all electrons

J? = �ec
X
i

�?�
(3)(x� xi(t)) (III.56)

where e is the magnitude of electron's charge, xi is the electron's position at time t,

and �(3) is the three-dimensional delta-function. Equation (III.11), �?, can also be

expressed as

�? = <f�K

i�̂e�ikozg (III.57)

where < signi�es taking the real part of the complex argument. Combining these

equations, Equation (III.55) becomes�
r

2

?
+ 2ik

�
1

L

@

@�

��
E(r; �) = �4�ikeK� < e�i�


> (III.58)

where r = xî+ yĵ. We have made use of Equation (III.14) and

�(x; t) =

Z
V

X
i

�(3)(x� xi(t))dV (III.59)

The average < ::: > represents an average over sample electrons in a volume element.

If we multiply Equation (III.58) by �4�iNeKL2=2mc2k, recall the dimensionless

optical �eld amplitude, jaj = 4�NeKjEjL=2mc2, and de�ne a dimensionless current

density j = 8�2Ne2K2L2�=3mc2, we have�
� iL
2k
r

2

?
+

@

@�

�
a(r; �) =< �je�i� > (III.60)

when  � o, a reasonable assumption for all the electrons during the length of the

interaction. Looking at the factors multiplying the transverse Laplacian suggests we

de�ne dimensionless transverse coordinates (where the tildes refer to the dimensionless
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variables):

~x = x

r
k

2L
(III.61)

~y = y

r
k

2L
(III.62)

We can now recast the Laplacian operator into a dimensionless Laplacian operator,

~r2

?
, since

@2

@x2
+

@2

@y2
=

k

2L

�
@2

@~x2
+

@2

@~y2

�
(III.63)

The FEL wave equation now becomes,�
� i
4
~r2

?
+

@

@�

�
a(~r; �) =< �je�i� > (III.64)

where a(~r; �) = jajei�, the complex dimensionless optical �eld amplitude, measures

the optical �eld strength in the interaction region; the dimensionless current j mea-

sures the interaction between the electron beam and the optical mode; and < e�i� >

measures the amount of electron bunching. If j is large (j >> �), the optical �eld a

changes rapidly so we have high gain. If j is small (j << �), we have low gain.

3. Gain

Thus far in our development of FEL physics, we have studied free electrons

interacting with laser light through a Lorentz force interaction in the undulator. We

have described, through the pendulum equation, the process of physically bunching

the electrons in phase space leading to coherent radiation. Finally, we have coupled

this radiation, through Maxwell's equations, with the electron beam co-propagating

in the undulator with the optical beam (see Equation (III.64)).

We must now discuss the modi�cation of the �eld by FEL ampli�cation. In

weak �elds, jaj << � and low gain j << �, we can apply a perturbation expansion of

the pendulum equation resulting in an expression for optical mode amplication [13]

G(�) = jF

�
2� 2 cos(�o�)� �o� sin(�o�)

�3o

�
(III.65)
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where the �lling factor, F , is the ratio of areas of the electron beam to the optical

mode. Gain is proportional to the dimensionless current density, j. At � = 1, the

�nal gain is

G(1) = jF

�
2� 2 cos(�o)� �o sin(�o)

�3o

�
(III.66)

Equation (III.66) is shown in Figure 12. Notice the anti-symmetric nature in �o

Figure 12. Gain curve plotted at � = 1.

and zero gain at �o = 0. The gain peaks at �o � 2:6 with peak absorption at

�o � �2:6. When the electrons are at phase velocities slightly above resonance,

the amount of energy transferred from the electron beam to the optical mode is

maximized meaning that the optical mode is ampli�ed by the electron beam. In

an operating FEL, electrons that initially go through the undulator spontaneously

emit in a spectrum (Figure 13a) centered around the resonant frequency. The weak

�eld low gain curve (Figure 13b) narrows the spectrum over many passes (Figure

13c). Over many passes, the laser spectrum narrows due to mode competition. The

top of Figure 13d shows a narrow linewidth after 2500 passes requiring only a few

microseconds of FEL operation.
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Figure 13. FEL coherence as it evolves from a broadband spectrum.(a) Broad-
band spectrum from spontaneous emission. (b) Low �eld gain curve. (c) Narrowing
broadband spectrum over many passes. (d) Final power spectrum showing narrow
linewidth.
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IV. OPTICAL THEORY

In the previous section, we described how oscillating electrons co-propagating

with the optical �eld gave rise to ampli�ed laser light. We will now restrict our

discussion to the the laser light itself as it propagates from the interaction region in free

space. We are interested in the transverse optical mode structure because the burn

pattern (/ ja(~x; ~y)j2) will determine the intensity delivered to a beam optic or a target.

Free electron lasers (FEL) primarily operate in the fundamental Gaussian mode, but

a few higher-order modes are also possible. It has been shown in simulations and

experiments that a few higher order modes can develop when the FEL is operated

with mirror shifts and tilts, electron beam shifts or mirror asymmetry. Building on

previous work [5], we will develop the mathematics for Hermite-Gaussian modes and

a means of �nding the coe�cients for a given waveform. The modal analysis described

here will be applied to FEL mirror distortions which is being investigated for the �rst

time.

A. OPTICAL WAVE EQUATION

We �rst begin our discussion of optical theory by describing light propagation

when no sources are present. Recall from the previous chapter, the FEL wave equation

in the undulator is �
� i
4
~r2

?
+

@

@�

�
a(~r; �) =< �je�i� > (IV.1)

when no sources are present, i.e., j = 0 and Equation (IV.1), reduces to�
~r2

?
+ 4i

@

@�

�
a(~r; �) = 0 (IV.2)

where a = jajei�, the complex dimensionless �eld amplitude, measures the optical

�eld strength. In terms of the FEL system, the following description is applicable

outside of the undulator or when the electron current is zero inside the undulator.

In our de�nitions of dimensionless variables ~x, ~y, and � , L represented the length of
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the undulator. It will now represent the length that the optical mode travels. Our

task now will be to �nd solutions of Equation (IV.2) to investigate transverse mode

properties.

B. FUNDAMENTAL MODE

A form for the solution of Equation (IV.2) in lowest order can be written down

as

a(~r; �) = aoe
�
�
p(�)+ ~r2

~zoq(�)

�
(IV.3)

where a(~r; �) is the dimensionless complex �eld amplitude proportional to the electric

�eld, ~r2 = ~x2 + ~y2, and ao is the real dimensionless optical amplitude at ~x = 0; ~y =

0; � = 0. Functions p(�) and q(�) are yet to be determined. Rayleigh length, ~zo =

Zo=L, is the longitudinal distance from the mode waist at which the optical area

doubles, i.e., where the mode radius exceeds the value at the waist by a factor of
p
2.

It is a measure of how the optical mode expands (see Figure 14). Equation (IV.3)

Figure 14. Cross section of a Gaussian mode propagating from � = 0! 1. The mode
with a smaller Rayleigh length expands more quickly. (a) ~zo = 0:20, �w = 0:0 (b)
~zo = 0:8, �w = 0:0
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is the dimensionless analogue of a form used by [16], et al. Since we are solving a

second-order di�erential equation, we must specify initial conditions to determine a

unique solution. We stipulate that at � = 0, a(~r; 0) = aoe
� ~r2

~zo , an initially transverse

Gaussian wavefront. The initial conditions then require:

p(0) = 0

q(0) = 1 (IV.4)

Our job will be to �nd p(�) and q(�).

We now take derivatives of Equation (IV.3) resulting in:

@2a

@~x2
=

��2
~zoq

+
4~x2

~z2oq
2

�
a (IV.5)

@2a

@~y2
=

��2
~zoq

+
4~y2

~z2oq
2

�
a (IV.6)

@a

@�
=

 
� �
p +

~x2
�
q

~zoq2
+

~y2
�
q

~zoq2

!
a (IV.7)

(Recall ( �: : :) = d(: : :)=d� .) Combining Equations (IV.5), (IV.6), (IV.7) into (IV.2)

and dividing through by a, we are arrive at

� 2

~zoq
+

4~x2

~z2oq
2
� 2

~zoq
+

4~y2

~z2oq
2
+ 4i

 
� �
p +

~x2
�
q

~zoq2
+

~y2
�
q

~zoq2

!
= 0 (IV.8)

Making use of ~r2 = ~x2 + ~y2, we have

~r2

~zoq2

�
1

~zo
+ i

�
q

�
=

�
1

~zoq
+ i

�
p

�
(IV.9)

For this equation to hold for any ~r2 at some particular time � , both terms in paren-

theses must be identically zero. Solving the left hand side for q(�)

�
q =

i

~zo

q(�) =

Z � i

~zo
d� 0

= qo +
i�

~zo
(IV.10)
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Applying the initial conditions, Equation (IV.4), we �nd

q(�) = 1 +
i�

~zo
(IV.11)

Solving the right hand side of Equation (IV.9) for p(�) and substituting Equation

(IV.11), we �nd
�
p(�) to be

�
p=

i~zo
~z2o + � 2

+
�

~z2o + � 2
(IV.12)

Integrating with respect to � and applying initial conditions, we have

p(�) =

Z � � i~zo
~z2o + � 02

+
� 0

~z2o + � 02
�
d� 0 (IV.13)

p(�) = i arctan
�

~zo
+ ln

s
� 2 + ~z2o

~z2o
(IV.14)

Substituting Equations (IV.11) and (IV.14) back into Equation (IV.3), we �nd

a(~r; �) = aoe

�
�i arctan �

~zo
�ln

r
�2+~z2o
~z2o

�
e

 
� ~r2

~zo(1+
i�
~zo

)

!
(IV.15)

We can clean up this mess if we make a few substitutions. From Equation (IV.11),

we have

1

q(�)
=

1

1 + i�
~zo

=
~zo

~zo +
�2

~zo

� i
�

~zo +
�2

~zo

(IV.16)

With the bene�t of hindsight, we can make the following de�nition:

~w2(�) = ~zo +
� 2

~zo

~w(�) =

s
~zo +

� 2

~zo
(IV.17)

Equation (IV.17) represents the optical mode radius as shown in Figure 15. The term

~zo is the dimensionless analogue of the dimesional Rayleigh length. The derivation

has assumed that the beam waist occurs at � = 0, that is, ~w(0) = ~wo =
p
~zo. But
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the beam waist may be positioned anywhere along � . It is a trivial matter to make

a time translation in the equations such that, � ! (� � �w). With Equation (IV.17),

we can re-express 1=q in terms of w and wo. Equation (IV.16) now becomes

1

q(�)
=

~w2
o

~w2(�)
� i

�

~w2(�)
(IV.18)

Figure 15. Cross section of a Gaussian mode as it propagates from � = 0 ! 1
illustrating the optical mode radius. �w = 0:3, ~zo = 0:3

Returning to Equation (IV.15) and substituting Equation (IV.18), the optical

�eld becomes1

a(~r; �) = ao
~wo

~w(�)
e
� ~r2

~w2(�) e
i ~r2�

~w2o ~w2(�) e�i arctan
�
~zo (IV.19)

Finally, we can write down the fundamental mode of the optical �eld as

a(~r; �) =

Amplitudez }| {
ao

~wo

~w(�)
e
� ~r2

~w2(�) e
i

�
~r2�

~w2o ~w2(�)
�arctan �

~zo

�
| {z }

Phase

(IV.20)

1The square root term can be expressed more compactly as ~wo= ~w
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where the mode waist is at �w = 0. For any arbitrary location of the mode waist, we

have

a(~r; �) =

Amplitudez }| {
ao

~wo

~w(� � �w)
e
� ~r2

~w2(���w) e
i

�
~r2(���w)

~w2o ~w2(���w)
�arctan ���w

~zo

�
| {z }

Phase

(IV.21)

As can be seen, the amplitude falls o� as e�~r2= ~w2
and is clearly Gaussian while the

phase term includes both ~r and � dependence. Equations (IV.20) and (IV.21) repre-

sents the lowest-order transverse electromagnetic mode. Figure 16 shows the surface

Figure 16. Real and imaginary parts of complex Gaussian mode at � = 0 with
�w = 0:5.

plots of the real and imaginary parts of Equation (IV.21). The real and imaginary

parts of a(~r; �) provides us with the amplitude and phase of the optical �eld since

ja(~r; �)j =
p
<fag2 + =fag2 (IV.22)

and

�(~r; �) = arctan
=fag
<fag (IV.23)

where � is the optical phase. Burn patterns are recognizable through the power in the

optical �eld, i.e., the optical �eld amplitude squared. In the following discussions we

36



will only plot the amplitude of the mode instead of the power (or amplitude squared)

because we would lose detail in the plots.

Figure 17. Initial (� = 0) and �nal (� = 1) surface amplitudes for the lowest order
mode where yellow represents highest largest amplitude.

Figure 18. Three panels shows cross sections of a Gaussian mode as it propagates
from � = 0! 1. ~zo = 0:25 �w = 0.

Figure 17 is a surface plot for a Gaussian mode at � = 0 and � = 1. Figure

18 is composed of three panels. The �rst panel shows a cross section (~x vs. ~y) of the

Gaussian mode at � = 0. The middle panel shows a cross section (~y vs. �) as the

mode propagates. The last panel shows the cross section of the mode at � = 1 (~x vs.

~y). Notice how a small Rayleigh length has spread the mode considerably.
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C. HIGHER ORDER MODES

In order to account for more complicated variations along transverse directions,

we can generalize the trial solution Equation (IV.3):

a(~r; �) = aog

�
~x

~w(�)

�
h

�
~y

~w(�)

�
e�(p(�)+ ~r2

~zoq(�)
) (IV.24)

The functions g and h will allow for a more intricate variance along transverse direc-

tions. Again, we demand the same initial conditions, namely, a(~r; 0) = aoe
� ~r2

~zo . This

implies, p(0) = 0, q(0) = 1, and g(~x= ~wo) = h(~y= ~wo) = 1 since the initial Gaussian

form already expressed in the factor e~r
2=~zo . As before, our job now will be to �nd the

unknown functions, p(�), q(�), g(~x= ~w(�)), and h(~y= ~w(�)) at later times. But before

we begin taking derivatives, let us consider derivatives of g (and by analogy h) to

illustrate the chain rule:

@g

@~x
=

@g

@( ~x
~w
)

@

@~x

�
~x

~w

�

=
1

~w

@g

@( ~x
~w
)

=
1

~w
g0 (IV.25)

@2g

@~x2
=

@

@~x

@g1
@~x

=
1

~w2
g00 (IV.26)

and

@g

@�
=

@g

@( ~x
~w
)

@

@�

� x
~w

�
= ~x

@g

@( ~x
~w
)

�
� 1

~w2

�
@ ~w

@�

= � ~x

~w2
g0

�
~w (IV.27)

As you can see, the primes over g denote a derivative with respect to its argument.

This little fact will become handy later. Taking derivatives of Equation (IV.24) results

in:
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@2a

@~x2
= ao

"
1

~w2
g00h� 4g0h~x

~w~zoq
� 2gh

~zoq
+
4gh~x2

~z2oq
2

#
e�(p(�)+ ~r2

~zoq(�)
) (IV.28)

@2a

@~y2
= ao

"
1

~w2
gh00 � 4gh0~y

~w~zoq
� 2gh

~zoq
+
4gh~y2

~z2oq
2

#
e�(p(�)+ ~r2

~zoq(�)
) (IV.29)

@a

@�
= ao

"
� 1

~w2
g0h

�
~w ~x� 1

~w2
gh0

�
~w ~y�gh �

p +
gh~x2

~zoq2
�
q +

gh~y2

~zoq2
�
q

#
e�(p(�)+ ~r2

~zoq(�)
) (IV.30)

Substituting Equations (IV.28), (IV.29), and (IV.30) into (IV.2), and dividing

through by aoghe
�(p(�)+ ~r2

~zoq(�)
), we have the following unpleasant monster:

1

~w2

g00

g
� 4~x

~w~zoq

g0

g
� 4i

�
~w

~w2
~x
g0

g| {z }
~x only

+
1

~w2

h00

h
� 4~y

~w~zoq

h0

h
� 4i

�
~w

~w2
~y
h0

h| {z }
~y only

+

+ ~r2
�

4

~z2oq
2
+

4i

~zoq2
�
q

�
| {z }

~r2 only

� 4

~zoq
� 4i

�
p| {z }

no ~r dependence

= 0 (IV.31)

In order for Equation (IV.31) to have a solution at a given time � (i.e. a transverse

plane), the ~x dependent terms should equal a constant, let's say, ��. The ~y dependent
terms should equal another constant, let's say ��. The ~r2 dependent terms should

be identically zero since it must be valid for at any location in the transverse plane.

Finally, the terms that don't depend on ~r, should equal � + �, so that the left hand

side sums to zero. Solving the ~r equation, we have

~r2
�

4

~z2oq
2
+

4i

~zoq2
�
q

�
= 0 (IV.32)

4~r2

~zoq2

h 1
~zo

+ i
�
q
i

= 0 (IV.33)

For this equation to hold for any ~r, the term in bracket must be identically zero. But

we have seen this requirement before in the fundamental mode derivation. Applying
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the initial conditions, we �nd that

q(�) = 1 +
i�

~zo
(IV.34)

Returning to the ~x dependence of Equation (IV.31), we multiply through by

g ~w2 and collect terms in derivatives of g, giving us

g00 � 4~x

�
~w

~zoq
+ i

�
~w

�
g0 + � ~w2g = 0 (IV.35)

Let us evaluate the parenthetical term, recalling Equations (IV.17), (IV.18), and

noting that
�
~w= �= ~w2

o ~w, we �nd�
~w

~zoq
+ i

�
~w

�
=

~w

~w2
o

�
~w2
o

~w2
� i

�

~w2

�
+ i

�

~w2
o ~w

=
1

~w
(IV.36)

So now we have

g00 � 4x

~w
g0 + � ~w2g = 0 (IV.37)

The above equation is close to the form of the Hermite equation [12], y00�2xy0+�y =

0. Recall that the primes denote a derivative with respect to the argument of the

function. So a judicious change in variables will allow us to recast Equation (IV.37)

in precisely the form of Hermite's equation. Let

� =

p
2~x

~w
! ~x =

~w�p
2

(IV.38)

@� =
p
2@(

~x

~w
) (IV.39)

Using Equations (IV.38) and (IV.39) on (IV.37), results in

@g2

@�2
� 2�

@g

@�
+
� ~w2

2
g = 0 (IV.40)

A power series solution will solve Equation (IV.40) uniquely with initial conditions.

But for the series to terminate, we must require � ~w2=2 to be equal to a nonnegative
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even integer. With this requirement, the power series solution terminates into the

well known Hermite polynomials:

g(�) = Hm(�) = Hm

 p
2~x

~w

!
where m = 0; 1; 2; 3 : : : (IV.41)

There will be a similar solution for the ~y terms of Equation (IV.31), i.e., h(�) =

Hn(�) = Hn(
p
2~y= ~w) where n = 0; 1; 2; 3 : : : The �rst ten Hermite polynomials are

listed in Table II.

H0(x) = 1
H1(x) = 2x
H2(x) = 4x2 � 2
H3(x) = 8x3 � 12x
H4(x) = 16x4 � 48x2 + 12
H5(x) = 32x5 � 160x3 + 120x
H6(x) = 64x6 � 480x4 + 720x2 � 120
H7(x) = 128x7 � 1344x5 + 3360x3 � 1680x
H8(x) = 256x8 � 3584x6 + 13440x4 � 13440x2 + 1680
H9(x) = 512x9 � 9216x7 + 48384x5 � 80640x3 + 30240x

Table II. Hermite Polynomials from [12]

Returning to Equation (IV.31), we are left with �nding a solution for p(�).

For Hermite solutions, � and � are constrained

� ~w2

2
= 2m! � =

4m

~w2

� ~w2

2
= 2n! � =

4n

~w2

Solving for
�
p, with the constraints, and Equations (IV.34) and (IV.17),

� 4

~zoq
� 4i

�
p= � + � (IV.42)

�
p =

i

~w2
(m+ n) +

i

~zoq

= i(m+ n+ 1)
~zo

~z2o + � 2
+

�

~z2o + � 2
(IV.43)

41



Integrating and applying initial conditions for p

p(�) = i(m+ n+ 1)~zo

Z �

0

@� 0

~z2o + � 02
+

Z �

0

� 0

~z2o + � 02
d� 0

= i(m+ n+ 1) arctan
�

~zo
+ ln

s
~z2o + � 2

~z2o
(IV.44)

So we now have all the pieces to Equation (IV.24). Putting it altogether, Equations

(IV.34), (IV.41), and (IV.44) into (IV.24), and after a little tidying up, we arrive

�nally at an expression for the (m,n) mode for the laser optical �eld:

am;n(~r; �) =

Amplitudez }| {
ao

~wo

~w
Hm

 p
2~x

~w

!
Hn

 p
2~y

~w

!
e�

~r2

~w2 ei�m;n(~r;�)| {z }
Phase

(IV.45)

where the phase, �m;n, is given by

�m;n(~r; �) =
~r2�

~w2
o ~w(�)

2
� (m+ n+ 1) arctan

�

~zo
(IV.46)

Figure 19 shows the \burn patterns" for various modes.

Figure 19. ja00j, ja01j, ja30j, ja31j (Left to right; Top to bottom)

42



D. NORMALIZATION

If we attempt to superpose modes with high values of m or n, the Hermite

polynomials with Gaussian envelopes for these higher modes have large coe�cients

as shown in Table II. To place all the modes on an equal footing we will normalize

each of them to the power in the fundamental which is given by

P0;0 =

Z 1

�1

Z 1

�1
ja0;0j2d~xd~y (IV.47)

Substituting Equation (IV.20) we have

P0;0 = a2o
~w2
o

~w2

Z 1

�1
e�

2~x2

~w2 d~x

Z 1

�1
e�

2~y2

~w2 d~y (IV.48)

so then

P0;0 =
�

2
a2o ~w

2
o (IV.49)

The power in an arbitrary mode is

Pm;n =

Z 1

�1

Z 1

�1
jam;nj2d~xd~y (IV.50)

Substituting Equation (IV.45) we have

Pm;n =

Z 1

�1

Z 1

�1
a2o

~w2
o

~w2
H2

mH
2
ne

� 2~r2

~w2 d~xd~y (IV.51)

To evaluate this integral, we make use of the fact that Hermite polynomials are

orthogonal on the range(�1,1) with respect to a weighting function [12],Z 1

�1
Hi(x)Hj(x)e

�x2dx = �i;j2
jj!
p
� (IV.52)

where the �i;j is the Kronecker delta. To properly make use of the orthogonality

condition, Equation (IV.52), we must �rst massage Equation (IV.51) into the correct

form. Consider the factor Z 1

�1
Hm

 p
2~x

~w

!2

e�
2~x2

~w2 d~x (IV.53)
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If we make the following change of variables, let

� =

p
2~x

~w
! ~x =

� ~wp
2

(IV.54)

so that,

d~x =
~wp
2
d� (IV.55)

Then Equation (IV.53) becomes

~wp
2

Z 1

�1
Hm(�)

2e��
2

d� (IV.56)

Employing the orthogonality condition, Equation (IV.52) when m0 = m, we have

~wp
2

Z 1

�1
Hm(�)

2e��
2

d� = ~w

r
�

2
2mm! (IV.57)

and similarly for the ~y factors. The power in the (m,n) mode then becomes

Pm;n =
�

2
a2o ~w

2
o2

m2nm!n! (IV.58)

= P0;02
m2nm!n! (IV.59)

So the power in the (m,n) mode can be normalized to the power in the fundamental

by dividing it through by 2m2nm!n!. A normalized expression for the optical �eld in

the (m,n) mode is then

Am;n =
1p

2m2nm!n!
am;n (IV.60)

This expression places all the higher-order modes on an equal footing; all modes have

the same power as the fundamental.

E. FINDING COEFFICIENTS

The total optical �eld is a superposition of all the separate normalized com-

ponents, i.e.,

AT (~r; �) =
1X
m;n

Cm;nAm;n(~r; �) (IV.61)

where Cm;n is the normalized coe�cient for the (m,n) mode. Each term, or com-

ponent, is a solution to the wave equation. So, the sum of terms is also a solution.
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Moreover, the Hermite-Gaussian modes form a complete orthogonal basis set [16] so

that any laser �eld satisfying the wave equation can be accurately represented by

Equation (IV.61) with appropriate coe�cients Cm;n. Our task now is to determine

the unknown normalized coe�cients Cm;n. As with a Fourier series decomposition

of a function, we can employ the Hermite analog of Fourier's Trick2. To determine

the coe�cients for an optical �eld, AT , we multiply Equation (IV.61) by
�

Am0;n0 and

integrate over all ~x and ~y giving usZ 1

�1

Z 1

�1
AT

�
Am0;n0 d~xd~y =

Z 1

�1

Z 1

�1

1X
m;n

Cm;nAm;n

�
Am0;n0 d~xd~y (IV.62)

where the asterisk denotes taking the complex conjugate. Expanding out the right

hand side, we have

=

Z 1

�1

Z 1

�1

1X
m;n

Cm;n
1p

2m2nm!n!
ao

~wo

~w
HmHne

� ~2r2

~w2 ei�m;n
1p

2m2nm!n!
ao

~wo

~w
Hm0Hn0e

�i�m0;n0

(IV.63)

Notice the term that involves the product of the phases from the unprimed and primed

optical �eld. Recalling Equation (IV.46), we then have

e�m;n e��m0;n0 = ei(�m;n� �m0;n0 )

= ei[((m
0� m) + (n0� n)) arctan �

~zo
] (IV.64)

This equation does not depend on ~x or ~y, so we can pull it out of the integral. Re-

turning to Equation (IV.63) and employing the orthogonality of Hermite polynomials

when m0 = m and n0 = n, we haveZ 1

�1

Z 1

�1
AT

�
Am;n d~xd~y = Cm;n

1

2m2nm!n!

a2o ~w
2
o

~w2

�
~w

r
�

2
2mm!

� �
~w

r
�

2
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(IV.65)

Combining this result with the left-hand side of Equation (IV.62), we have

Cm;n =
2

�a2o ~w
2
o

Z 1

�1

Z 1

�1
AT

�
Am;n d~xd~y (IV.66)

2[14], Chapter 3
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This equation is an expression for the normalized coe�cients for our optical �eld AT .

Our next task will be to write computer code to determine the coe�cients of any

waveform.
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V. SIMULATIONS

In this chapter we will describe how numerical simulation can solve the non-

linear di�erential equations that have been developed. Non-linear di�erential equa-

tions are exceedingly di�cult to solve analytically but are relatively \easy" with a

computer.

A. MODELING THE FREE ELECTRON LASER

In order to model the FEL we must simultaneously solve two coupled di�er-

ential equations: the pendulum equation, Equation (III.32),

��
�= jaj cos(� + �)

and the FEL wave equation, Equation (III.64),�
� i
4
~r2

?
+

@

@�

�
a(~r; �) =< �je�i� >

The pendulum equation updates electron phases and phase velocities and the wave

equation propagates the light self-consistently with the electron beam interaction.

The Naval Postgraduate School's Directed Energy and Electric Weapons Center uses

an Apple Xserve cluster to model the FEL (see Figure 20). The cluster is speci�cally

designed to model the FEL in four dimensions as well as model FEL performance due

to perturbations or test validity of new designs.

In order to numerically solve Equation (III.64), fast Fourier transforms are

used in the code [17]. An output for a recent simulation is given in Figure 21.
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Figure 20. NPS Apple Xserve cluster with 64 nodes / 128 processors.
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Figure 21. FEL simulation output. (a) Optical mode evolution over 500 passes at
right mirror (b) Surface plot of the optical �eld at the right mirror after last pass;
(c) User de�ned parameters (see Table (III)); (d) Cross section of optical mode and
electron beam as it propagates from � = 0! 1 on last pass; (e) Evolution of electron
beam distribution in phase velocity over 500 passes; (f) Electron phase space at � = 1
after last pass; (g) Optical power evolution over 500 passes; (h) Optical gain evolution
over 500 passes; (i) Burn pattern of optical mode at left mirror after last pass; (j)
Optical phase for at left mirror after last pass; (k) Burn pattern of optical mode at
right mirror after last pass; (l) Optical phase for at right mirror for last pass; (m)
Hermite-Gaussian coe�cients for right mirror (Code is developed in this chapter)
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Symbol Name Equation
j Electron current density j = 8�2Ne2K2L2�=3mc2

�o Electron phase velocity �o = [(k + ko)�z � k]L
!� Betatron frequency !� = 2�NK=
�� Electron beam waist position �� = Z�=L

yo Electron beam shift yo = Yo
p
�=L�

�yo Electron beam tilt �yo = �
p
L�=�

a Initial optical �eld amplitude jaj = 4�NeKjEjL=2mc2
zo Rayleigh length zo = Zo=L

rm Dimensionless mirror radius rm = Rm

p
�=�L

e Mirror edge loss See [18]
Qn Cavity quality factor Qn = 1/(loss per pass)

�x, �y Electron beam radius �x = Xe

p
�=L�

��x, ��y Electron beam angular spread
��� Spread in electron phase velocity

due to emittance See [18]
�� Spread in electron phase velocity

due to energy spread See [18]
�w Optical mode waist position �w = Zw=L

rh Right mirror hole radius rh = Rh

p
�=�L

rc Mirror radius of curvature rc = Rc

p
�=�L

Table III. User-de�ned FEL simulation parameters

Each node of the Apple cluster can run a simulation such as the one shown

above at a di�erent values of �o simultaneously. We can then determine gain and

extraction values at the optimum value of �o. This simulates what the FEL would do

by mode competition.

The simulation also provides us with an array describing the optical �eld,

a(~x; ~y). As mentioned in the previous chapter, the optical �eld is a superposition of

Hermite-Gaussian basis set with appropriately chosen coe�cients. Mirror distortion

or electron beam shifts and tilts can cause the optical �eld to develop higher-order

modes. We will now analyze these modes by �nding their coe�cients numerically.
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B. FINDINGHERMITE-GAUSSIAN COEFFICIENTS NU-

MERICALLY

Equation (IV.66) is the analytical expression for the normalized Hermite-

Gaussian (HG) coe�cients. We need to recast this equation in a form that is

computer-friendly. Since AT and
�

Am;n are complex, we can write:

AT = Ar
T + iAi

T (V.1)

�
Am;n= Ar

m;n � iAi
m;n (V.2)

where Ar
T and Ai

T are the real and imaginary parts of the total normalized optical

�eld and Ar
m;n and Ai

m;n are the real and imaginary parts of the normalized (m,n)

mode. Equation (IV.66) becomes

Cm;n =
2

�a2o ~w
2
o

Z Z
(Ar

T + iAi
T )(A

r
m;n � iAi

m;n)d~x d~y (V.3)

Expanding out the factors and separating the coe�cients into their real and imaginary

parts, we have

Cr
m;n =

2

�a2o ~w
2
o

Z Z
(Ar

T A
r
m;n + Ai

T A
i
m;n) d~x d~y (V.4)

Ci
m;n =

2

�a2o ~w
2
o

Z Z
(Ai

T A
r
m;n � Ar

T A
i
m;n) d~x d~y (V.5)

and

jCm;nj2 = (Cr
m;n)

2 + (Ci
m;n)

2 (V.6)

So, let us �rst describe the procedure for developing a numerical modal analysis tool

in the C programming language:

1. Construct Hermite-Gaussian basis arrays.

2. Read in or form a user-de�ned optical �eld.

3. Determine HG coe�cients via Equations (V.4), (V.5), and (V.6)
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Our expression for the optical �eld, Equation (IV.61) is a sum of the normalized basis

at some time � . Recall that the optical �eld is a complex number so we must keep

track of the real and imaginary parts. These analytical expressions are continuous in

~x and ~y so we recast the expression for the (m,n) mode into their real and imaginary

parts over the discrete sites in the array. Therefore, in pseudo-code we have

Ar[m][n][~xj][~yk] =

ao
~wo

~w
Hm

 p
2~xj
~w

!
Hn

 p
2~yk
~w

!
e�

~r2
j;k

~w2 cos

�
~r2j;k�

~w2
o ~w

2
� (m+ n+ 1) arctan

�

~zo

�
(V.7)

Ai[m][n][~xj][~yk] =

ao
~wo

~w
Hm

 p
2~xj
~w

!
Hn

 p
2~yk
~w

!
e�

~r2
j;k

~w2 sin

�
~r2j;k�

~w2
o ~w

2
� (m+ n+ 1) arctan

�

~zo

�
(V.8)

where Ai and Ar are four-dimensional arrays indexed by the mode number and posi-

tion, given by (m,n) and (~xj, ~yk), respectively. We calculate the basis set for the �rst

several modes and store these values in their arrays. We then read in the optical �eld

that is passed as an array from the main FEL simulation or form a user-de�ned �eld1

by a linear combination of normalized Hermite-Gaussian modes using the arrays that

been calculated.

We determine the HG coe�cients via Equations (V.4), (V.5), and (V.6). We

approximate the double integral by nested loops over m, n, and over the number of

array sites, nx. In pseudo-code,

Cr[m][n] =
2

�a2o ~w
2
o

nxX
k

nxX
j

�
Ar
T [~xj][~yk]A

r[m][n][~xj][~yk] + Ai
T [~xj][~yk]A

i[m][n][~xj][~yk]
�

(V.9)

and

Ci[m][n] =
2

�a2o ~w
2
o

nxX
k

nxX
j

�
Ai
T [~xj][~yk]A

r[m][n][~xj][~yk]� Ar
T [~xj][~yk]A

i[m][n][~xj][~yk]
�

(V.10)

1A user-de�ned �eld can be used as a check on the code to ensure that it is operating properly.
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The square of the magnitude of the HG coe�cient for the (m,n) mode is then given

by Equation (V.6), that is,

C[m][n]2 = (Cr[m][n])2 + (Ci[m][n])2 (V.11)

It is convenient to normalize the square of the magnitudes to the power of the

total �eld AT . The power in the total �eld is given by

PT =

Z 1

�1

Z 1

�1
jAT j2d~xd~y (V.12)

Substituting Equation (IV.61) and working out the integrals we �nd that

PT =
�

2
a2o ~w

2
o

1X
m;n

C2
m;n (V.13)

Recall that the power in the fundamental mode is given by P0;0 = �a2o ~w
2
o=2 so that

the total power in the optical �eld is then (in terms of the fundamental)

PT = P0;0

1X
m;n

C2
m;n (V.14)

The fractional power spectrum, S[m][n], is then

S[m][n] =
C[m][n]2P
i;j C[i][j]

2
(V.15)

where
P

i;j C[i][j]
2 is the sum of all the squares of the normalized mode coe�cients.

To illustrate how the code works, consider the following examples illustrated in

Figures 22 and 23. In Figure 22 (a), the diagnostic correctly identi�es the fractional

power spectrum as 50% in both A0;2 and A2;0 modes. Incidentally, the superposition

of equally weighted A0;2 and A2;0, with no relative phase di�erence between them,

results in a pure L0
1 Laguerre-Gaussian mode2.

In Figure 22 (b), the diagnostic correctly identi�es the fractional power spec-

trum for the superposition of A0;0, A1;1, and A3;3 with C0;0 = 1, C1;1 = 2, and C3;3 = 3

2To see this: ask Professor Colson and he will buy you a beer.
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as 7%, 28%, and 64%, respectively. A screen capture of Cmn.c is shown in Figure

23 for this case. As you can see, the program outputs the Rayleigh length and mode

waist. It then displays the mode radius at � = 0, the power in the fundamental, and

total power in the arbitrary �eld. The fractional power spectrum is then calculated

and displayed. The code then propagates the optical �eld in free-space and performs

the same analysis on the �nal waveform.

In Figure 22 (c), the diagnostic correctly identi�es the fractional power spec-

trum for the superposition of equally weighted A0;0, A0;2, and A0;4 modes. We will see

a similar combinations of even `m' and `n' valued modes when we investigate mirror

distortions.

The diagnostic developed for this thesis for Hermite-Gaussian modal analysis

was then incorporated into the main NPS FEL simulation code as a function call.

In the next chapter, we will see this diagnostic in action when we simulate mirror

distortions.
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Figure 22. Graphics from Cmn.c output was drawn with MatLab (a) Superposition
of equally weighted A0;2 and A2;0. (b) Superposition of A0;0, A1;1, and A3;3 with
C0;0 = 1, C1;1 = 2, and C3;3 = 3. (c) Superposition of equally weighted A0;0, A0;2,
and A0;4.
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Figure 23. Output from diagnostic tool Cmn.c
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VI. MIRROR DISTORTIONS

A. COLD CAVITY THEORY

In the pursuit of a weapons class FEL, high power and high intensity can lead

to mirror distortions if heat deposited by the laser light to the mirror substrate isn't

removed by cooling in a uniform manner. Distortions then cause higher-order modes

to appear. It is important to quantify the fractional power spectrum among the

higher-order modes because doing so uniquely identi�es the laser �eld and may allow

for corrective optics to single out the best modes for FEL lethality. We will investigate

three di�erent cases of mirror distortions on the outcoupling mirror: hyperbolic,

ellipsoidal, and spherical. Hyperbolic and ellipsoidal distortions can be classi�ed as

a mirror astigmatism. It occurs when the radius of curvature of the spherical mirror

along an axis di�ers by some small amount when compared to the perpendicular axis.

For simplicity we chose these axes to line up with ~x and ~y. Spherical distortion is

not astigmatism because both axis are changed in exactly the same amount and in

the same direction. Spherical distortions do change the Rayleigh length. Before we

consider the e�ects of mirror distortions on FEL operation, let us explore cold-cavity

e�ects (i.e., no electron beam present) of mirror \errors" to get a avor for how the

FEL might respond. Keep in mind that cold-cavity theory discussed in this section

keeps both mirrors the same. The dimensionless radius of curvature of the two ideal

mirrors determines the Rayleigh length, ~zo [18], and is given by1

~rc =
�m
2

+
2~z2o
�m

(VI.1)

where �m is the dimensionless mirror separation. Factoring out �m=2 and de�ning a

small parameter � = 4~z2o=�
2
m, we then have

~rc =
�m
2
(1 + �) (VI.2)

1Symmetric confocal cavity. See [19], chapter 12.
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where � << 1 for �m >> ~zo. Typically, �m � 10 and ~zo � 0:1, so � � 4 x 10�4. What

if an actual mirror di�ers from the ideal mirror by a small amount? This could occur

because mirror heating has distorted both mirrors, for instance. We can quantify this

distortion as follows

~rc ! ~rc(1 + �) (VI.3)

where � is a small deviation from the original radius of curvature ~rc. Combining these

relations we have

~rc =
�m
2
(1 + �)(1 + �) (VI.4)

~rc =
�m
2
(1 + �+ �+ ��) (VI.5)

Since � and � are small, we can approximate this equation to �rst order giving us

~rc � �m
2
(1 + �+ �) (VI.6)

We now ask, \What is going on with the mode radius at the waist and at the

outcoupling mirror with respect to � and �m?" The waist is given by

~wo =
p
~zo (VI.7)

We can solve Equation (VI.1) for ~zo giving us

~zo =
�m
2

�
2~rc
�m

� 1

� 1
2

(VI.8)

and substitute that into our expression for the waist giving us

~wo =
��m
2

� 1
2

�
2~rc
�m

� 1

� 1
4

(VI.9)

Substituting Equation (VI.6), we now have

~wo �
��m
2

� 1
2

�
2

�m

�m
2
(1 + �+ �)� 1

�
(VI.10)

~wo �
��m
2

� 1
2

(�+ �)
1
4 (VI.11)
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Let us now consider the mode radius at the mirror. The mode radius is given

by Equation (IV.17). At the outcoupling mirror, � = �m=2, we then have

~w(�m=2) = ~wm =

s
~zo +

� 2m
4~zo

(VI.12)

Substituting Equations (VI.6) and (VI.8) in for ~zo and after a little algebra we arrive

at

~wm =

r
~zo

�+ �
(VI.13)

In both Equations (VI.11) and (VI.13), there is a problem when the mirror distortion

� ! ��. Let us plot these two equations with respect to �=�. From Figure 24 we

Figure 24. Cold-cavity. (a) Waist radius variation (b) Mode radius variation at the
outcoupling mirror.

can see that if the error, � is less than �� the waist radius and mode radius becomes

imaginary. If � = ��, the waist radius becomes zero and the mode radius at the

mirror becomes in�nity. So, as far as cold-cavity analysis predicts, mode radius can

be sensitive to mirror distortions that are on the order of ��. So we may expect

actual FEL operation to follow a similar trend.
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We chose to simulate the e�ects of mirror distortions on two di�erent JLab

oscillator con�gurations: Electromagnetic (EM) wiggler and STI Optronics wiggler

designs. The following table highlights their major di�erences.

EM wiggler STI wiggler

Undulator period, �o (cm) 8 5.5
Undulator parameter, K 0.5 1.36
Undulator length, L (m) 2.3 1.65
No. Periods, N 29 30
Mirror Separation, S (m) 30 50
Quality factor, Qn 25 9
Rayleigh length, Zo (cm) 90 70
� (%) 0.35 0.2

Table IV. JLab EM and STI wiggler comparison

B. HYPERBOLIC DISTORTION

In the case of hyperbolic distortion, we vary the mirror distortion on the

outcoupling mirror in the following way:

�~rc~y = ��~rc~x (VI.14)

where �~rc~y and �~rc~x are the changes of outcoupling mirror radius-of-curvature in the

~x and ~y directions, respectively. First let us consider the EM wiggler design. The

results for gain and extraction are shown in Figure 25. Notice how both the gain and

extraction graphs are symmetric about zero � as should be expected for a hyperbolic

distortion. Although, cold cavity analysis predicts catastraphic results when mirror

distortions are less than ��, we see that with FEL operation both the gain and

extraction curves continues well beyond this cold cavity limit (�� is indicated by the

red tick mark).

Notice also a peak in gain and extraction as the magnitude of � is increased.

It seems counterintuitive that increasing hyperbolic mirror distortion would improve

60



Figure 25. (a) Gain trend for hyperbolic distortion for the JLab EM wiggler. (b)
Extraction trend for hyperbolic distortion for the JLab EM wiggler

FEL operation. This can be explained if we look at at Figure 25 (b). If we compare

the burn patterns for � = 0 and � = 0:5%, we can see that the mode shape at the

mirror (yellow) is wider for the � = 0:5% case than for the � = 0% case. If the

mode is more spread out at the mirror, we can conclude that the mode was more

tightly focused in the undulator leading to a greater interaction between the optical

mode and the electron beam leading to greater gain and extraction. This bene�cial

e�ect does not go on inde�nitely. Eventually greater distortion will cause the mode

to become so large that the mode will be clipped by the outcoupling mirror reducing

gain and extraction. An example of a mode being clipped is shown in Figure 25 (a)

for the � = �2% case. We also show the modal coe�cients that comprise this data

point. Notice that the `n' modes are weighted more heavily than the `m' modes since

the burn pattern is spread out in the ~y direction and that only even modes are present
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since the original wave shape is assumed to be a fundamental Gaussian. Only the

even modes overlap the origin (~x = 0; ~y = 0) where the electron beam is amplifying

the light.

Figure 26. (a) Gain trend for hyperbolic distortion for the JLab STI wiggler. (b)
Extraction trend for hyperbolic distortion for the JLab STI wiggler

We next considered the STI wiggler design. The results for gain and extraction

are shown in Figure 26. As with the EM wiggler case, we see that the gain and the

extraction are symmetric. The gain is much larger in the STI wiggler design due to a

larger value of the undulator parameter, K. The mirror separation is greater, thereby

yielding a somewhat smaller value for � (�EM = 0:35% vs. �STI = 0:2%). We also see

a rise in gain and extraction for distortions on the order of j�j as in the EM wiggler

case. Notice in Figure 26 (b) for � = 0:5%, how the coe�cients are strongly weighted

in the `m' modes due to a spreading out in the ~x direction. Again, only the even

modes are driven by the electron beam at the origin.
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C. ELLIPSOIDAL DISTORTION

In ellipsoidal distortion, we vary the mirror error on the outcoupling mirror in

the following way:

vary �~rc~y , �~rc~x = 0 (VI.15)

As before, let us consider the EM wiggler results. Notice in Figure 27, both the gain

Figure 27. (a) Gain trend for ellipsoidal distortion for the JLab EM wiggler. (b)
Extraction trend for ellipsoidal distortion for the JLab EM wiggler

and extraction curves are not symmetric, as should be expected for an asymmetric

distortion. Both gain and extraction curves have the same general shape as Figure

24 (a). Unlike the cold cavity case, the FEL operates well beyond � < ��. As

� is decreased further, higher-order modes appear as shown in the coe�cient chart.

Conversely, as � is increased (� > ��), the mode remains near the fundamental mode.

In Figure 28, we have the results for ellipsoidal distortions in the STI wiggler.

Both curves are once again asymmetric. Notice how the gain curve reaches its max-
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Figure 28. (a) Gain trend for ellipsoidal distortion for the JLab STI wiggler. (b)
Extraction trend for ellipsoidal distortion for the JLab STI wiggler

imum at � = �1:5% which is several times greater than cold-cavity theory predicts

the resonator should fail. The extraction curve is not as smooth as the EM wiggler

extraction curve. But the general shape is still present, i.e., maximum nigh �� and a

relatively at extraction in the positive � direction.

D. SPHERICAL DISTORTION

In spherical distortion, we vary the mirror distortion on the outcoupling mirror

in the following way:

vary �~rc~y = �~rc~x (VI.16)

Spherical distortion is not a misnomer even though the mirror remains cylindrically

symmetric, because the highly reecting mirror is not altered. The high power laser

beam is assumed to have caused a symmetric distortion, as in Equation (VI.16). Res-
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onator cavity instabilities are introduced as the distortion is increased or decreased.

Notice in Figure 29, the burn patterns are cylindrically symmetric. Again, we see

Figure 29. (a) Gain trend for spherical distortion for the JLab STI wiggler. (b)
Extraction trend for spherical distortion for the JLab STI wiggler

good gain and extraction well into the regime where cold-cavity theory predicts a

non-functioning FEL. Modal decomposition reveals an equal weighting of lower-order

modes yielding burn patterns with central holes in them. Spherical distortion varies

the e�ective cavity Rayleigh length. In Figure 30, we notice the burn patterns caused

by varying Rayleigh length are cylindrically symmetric and comprised of equally

weighted modes similar to spherical distortions. In Figure 30 (a), gain increases as

we go to shorter Rayleigh lengths because the mode is more focused in the interac-

tion region (see Figure 14) increasing the value of the �lling factor. Since, gain is

proportional to the �lling factor, gain goes up. Shorter Rayleigh lengths expands the

mode on the mirrors. In Figure 30 (b), the green curve shows a decreasing intensity
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Figure 30. (a) Gain trend for Rayleigh length variation in the JLab STI wiggler. (b)
Extraction and mirror intensity trends for Rayleigh length variation in the JLab STI
wiggler

with decreasing Rayleigh length. This is good for FEL optics because the decreased

intensity will mitigate mirror distortions caused by uneven heating or cooling.
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VII. CONCLUSION

In this thesis, we have reviewed free electron laser theory and for the �rst

time developed analytical solutions to quantify Hermite-Gaussian higher-order modes,

developed a diagnostic for modal analysis, and investigated tolerance limits on mirror

distortions. Hermite-Gaussian modes form a complete and orthogonal basis set that

can fully describe any optical �eld and is a natural basis set when describing mirror

distortions that do not possess cylindrical symmetry.

Modal analysis is a useful tool for describing mode quality. We are able to

identify the fractional power spectrum in higher-order modes. This information may

be used by an adaptive optics system to single out the best modes for propagation

and lethality.

Tolerance limits on mirror distortions are several times greater than what cold

cavity theory predicts. This is due to the electron beam not allowing the optical mode

to shrink to zero size. The electron beam stabilizes the operation of the FEL. Sim-

ulations indicate JLab FEL should tolerate mirror distortions several percent, which

is much greater than cold-cavity predictions. Finally, we recommend the following

future work:

� Investigate Laguerre-Gaussian modes as another complete and orthogonal ba-
sis set to include azimuthal dependence.

� Incorporate both Hermite-Gaussian and Laguerre-Gaussian modal decompo-
sition in the complete four dimensional FEL simulation program.

� Utilizing the diagnostic tool, investigate higher-order modes that appear due
to mirror shifts/tilts and electron beam shifts/tilts.

� Choose a catchy and snappy name for NPS FEL simulation software....something
other than wavens.
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APPENDIX A. CODES

We present the following programs used for �nding Hermite-Gaussian coef-

�cients of an arbitrary optical �eld and the MatLab scripts used in plotting. Line

numbers are included for convenience.

1. CMN.C
/ * start of Cmn.c */

1 // LCDR Ricardo Vigil

2 // Thesis work

3 // June 2006 graduation date

4 // 13 major revisions

5

6 /* Program functions:

7 - Combines up to ten user defined Hermite Gaussian modes

8 to form an initial optical field

9 - Decomposes the initial optical field into its constituent HG modes

10 - Propagates the waveform in free space

11 - Decomposes the propagated waveform into its constituent HG modes.

12

13 input files: Cmn.in

14

15 output files:

16 initial.out - (x,y) initial amplitude in optical field, i.e, at tau = 0

17 final.out - (x,y) final amplitude in optical field, i.e., at tau = 1

18 ytau.out - (y,t) amplitude cross section in (y, tau = 0 to 1)

19

20 Matlab graphics file: Coeffs.m

21 Creates 5 graphics

22 1. Amplitude burn pattern at tau = 0

23 2. Amplitude surface plot at tau = 0

24 3. Amplitude burn pattern at tau = 1

25 4. Amplitude surface plot at tau = 1

26 5. Propagation cross section in y vs tau

27

28 */

29

30 #include <stdio.h>

31 #include <stdlib.h>
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32 #include <math.h>

33

34

35 /* these arrays are defined outside main() due to segmentation faults */

36

37 double Abinitialr[10][10][200][200]; // real: (m,n) tau = 0

38 double Abinitiali[10][10][200][200]; // img: (m,n) tau = 0

39 double Abfinalr[10][10][200][200]; // real: (m,n) tau = 1

40 double Abfinali[10][10][200][200]; // img: (m,n) tau = 1

41

42 int main(){

43

44 double P0=0.0, P1=0.0, rsq=0.0, dx=0.0, dy=0.0, C=0.0, wi=0.0, wf=0.0;

45 double Ao=0.0, zo=0.0, wo=0.0, tau=0.0, tauw=0.0, dtau=0.0, phi=0.0;

46 double c2sumInitial=0.0, c2sumFinal=0.0, temp1=0.0, temp2=0.0;

47 double Hx=0.0, Hy=0.0, ampinitial=0.0, ampfinal=0.0, ampy=0.0, K=0.0;

48 double pi=3.1415926, u=0.0, v=0.0;

49

50 double cinitialr[10][10]; // real: inital coeff for the mth nth mode

51 double cinitiali[10][10]; // img: intial coeff for the mth nth mode

52 double c2maginitial[10][10];// initial magnitude squared for (m,n) mode

53 double cfinalr[10][10]; // real: final coeff for the mth nth mode

54 double cfinali[10][10]; // img: final coeff for the mth nth mode

55 double c2magfinal[10][10]; // final magnitude squared for (m,n) mode

56 double iS[10][10]; // initial power spectrum ratio for (m,n) mode

57 double fS[10][10]; // final power spectrum ratio for (m,n) mode

58

59 double Powerinitial[10][10]; //Power in (m,n) normalized.

60 double Powerfinal[10][10]; //Power in (m,n) normalized.

61

62 double Atr[200][200]; //real: total real optical field

63 double Ati[200][200]; //img: total img optical field

64 double Atr_old[200][200]; //old values: real

65 double Ati_old[200][200]; //old values: img

66

67 int i=0,j=0,k=0,l=0,nx=0,W=0,x=0,y=0;

68 double c0=0.0,c1=0.0,c2=0.0,c3=0.0,c4=0.0;

69 double c5=0.0,c6=0.0,c7=0.0,c8=0.0,c9=0.0;

70 int m0=0,m1=0,m2=0,m3=0,m4=0,m5=0,m6=0,m7=0,m8=0,m9=0;

71 int n0=0,n1=0,n2=0,n3=0,n4=0,n5=0,n6=0,n7=0,n8=0,n9=0,count1=0;

72 unsigned int f;

73 unsigned int factorial(unsigned int a);
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74

75 int m[10], n[10];

76 double c[10];

77

78 FILE *input, *initial, *final, *ytau;

79 input = fopen("Cmn.in","r");

80 initial = fopen("initial.out","w");

81 final = fopen("final.out","w");

82 ytau = fopen("ytau.out","w");

83

84 printf("Files opened\n");

85

86 fscanf(input,"%lf %d %d",&c0,&m0,&n0);

87 fscanf(input,"%lf %d %d",&c1,&m1,&n1);

88 fscanf(input,"%lf %d %d",&c2,&m2,&n2);

89 fscanf(input,"%lf %d %d",&c3,&m3,&n3);

90 fscanf(input,"%lf %d %d",&c4,&m4,&n4);

91 fscanf(input,"%lf %d %d",&c5,&m5,&n5);

92 fscanf(input,"%lf %d %d",&c6,&m6,&n6);

93 fscanf(input,"%lf %d %d",&c7,&m7,&n7);

94 fscanf(input,"%lf %d %d",&c8,&m8,&n8);

95 fscanf(input,"%lf %d %d",&c9,&m9,&n9);

96 fscanf(input,"%lf %d %d",&Ao,&W,&nx);

97 fscanf(input,"%lf %lf %lf",&zo,&tauw,&dtau);

98

99 /* initializations------------------------------- */

100

101 printf("Initializations\n");

102

103 c[0]=c0; c[1]=c1; c[2]=c2; c[3]=c3; c[4]=c4;

104 c[5]=c5; c[6]=c6; c[7]=c7; c[8]=c8; c[9]=c9;

105

106 m[0]=m0; m[1]=m1; m[2]=m2; m[3]=m3; m[4]=m4;

107 m[5]=m5; m[6]=m6; m[7]=m7; m[8]=m8; m[9]=m9;

108

109 n[0]=n0; n[1]=n1; n[2]=n2; n[3]=n3; n[4]=n4;

110 n[5]=n5; n[6]=n6; n[7]=n7; n[8]=n8; n[9]=n9;

111

112 dx = (1.0*W)/(1.0*nx);

113 C = dtau/(4.0*dx*dx);

114 wo = sqrt(zo);

115 printf("zo = %g\t tauw = %g\n", zo,tauw);
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116

117 for(k=0;k<10;k++)

118 for(l=0;l<10;l++) {

119 Powerinitial[k][l]=0.0;

120 Powerfinal[k][l]=0.0;

121 cinitialr[k][l] = 0.0;

122 cinitiali[k][l] = 0.0;

123 c2maginitial[k][l] = 0.0;

124 cfinalr[k][l] = 0.0;

125 cfinali[k][l] = 0.0;

126 c2magfinal[k][l] = 0.0;

127 iS[k][l] = 0.0;

128 fS[k][l] = 0.0; }

129

130 for(x=0;x<nx;x++)

131 for(y=0;y<nx;y++) {

132 Atr[x][y] = 0.0;

133 Ati[x][y] = 0.0;

134 Atr_old[x][y] = 0.0;

135 Ati_old[x][y] = 0.0; }

136

137 for(k=0;k<10;k++)

138 for(l=0;l<10;l++)

139 for(i=0;i<nx;i++)

140 for(j=0;j<nx;j++){

141 Abinitialr[k][l][i][j] = 0.0;

142 Abinitiali[k][l][i][j] = 0.0;

143 Abfinalr[k][l][i][j] = 0.0;

144 Abfinali[k][l][i][j] = 0.0; }

145

146 /* Initializaitons complete ------------------*/

147 /* Loading basis set -------------------------*/

148

149 printf("\nLoading up basis sets at tau = 0.\n\n");

150

151 tau = 0.0;

152 wi = sqrt( zo + (tau-tauw)*(tau-tauw)/zo );

153 printf("w(%g) = %g\n",tau,wi);

154

155 for(k=0;k<10;k++)

156 for(l=0;l<10;l++)

157 for(x=0;x<nx;x++)
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158 for(y=0;y<nx;y++){

159 u = (sqrt(2)/wi)*(x - nx/2 + 0.5) * dx;

160 v = (sqrt(2)/wi)*(y - nx/2 + 0.5) * dx;

161 if (k==0) Hx=1.0;

162 if (k==1) Hx=2*u;

163 if (k==2) Hx=4*pow(u,2)-2;

164 if (k==3) Hx=8*pow(u,3)-12*u;

165 if (k==4) Hx=16*pow(u,4)-48*pow(u,2)+12;

166 if (k==5) Hx=32*pow(u,5)-160*pow(u,3)+120*u;

167 if (k==6) Hx=64*pow(u,6)-480*pow(u,4)+720*pow(u,2)-120;

168 if (k==7) Hx=128*pow(u,7)-1344*pow(u,5)+3360*pow(u,3)-1680*u;

169 if (k==8) Hx=256*pow(u,8)-3584*pow(u,6)+13440*pow(u,4)-13440*

170 pow(u,2)+1680;

171 if (k==9) Hx=512*pow(u,9)-9216*pow(u,7)+48384*pow(u,5)-80640*

172 pow(u,3)+30240*u;

173 if (l==0) Hy=1.0;

174 if (l==1) Hy=2*v;

175 if (l==2) Hy=4*pow(v,2)-2;

176 if (l==3) Hy=8*pow(v,3)-12*v;

177 if (l==4) Hy=16*pow(v,4)-48*pow(v,2)+12;

178 if (l==5) Hy=32*pow(v,5)-160*pow(v,3)+120*v;

179 if (l==6) Hy=64*pow(v,6)-480*pow(v,4)+720*pow(v,2)-120;

180 if (l==7) Hy=128*pow(v,7)-1344*pow(v,5)+3360*pow(v,3)-1680*v;

181 if (l==8) Hy=256*pow(v,8)-3584*pow(v,6)+13440*pow(v,4)-13440*

182 pow(v,2)+1680;

183 if (l==9) Hy=512*pow(v,9)-9216*pow(v,7)+48384*pow(v,5)-80640*

184 pow(v,3)+30240*v;

185

186 rsq = ((x-nx/2+0.5)*(x-nx/2+0.5)+(y-nx/2+0.5)*(y-nx/2+0.5))*dx*dx;

187 phi = (rsq*(tau-tauw)/(wo*wo*wi*wi)-(k+l+1)*atan((tau-tauw)/zo));

188

189 Abinitialr[k][l][x][y]=Ao*wo*Hx*Hy*exp(-rsq/(wi*wi))*cos(phi)/wi*

190 sqrt(1/(pow(2,k)*pow(2,l)*factorial(k)*factorial(l)));

191

192 Abinitiali[k][l][x][y]=Ao*wo*Hx*Hy*exp(-rsq/(wi*wi))*sin(phi)/wi*

193 sqrt(1/(pow(2,k)*pow(2,l)*factorial(k)*factorial(l)));

194

195 Powerinitial[k][l] = Powerinitial[k][l]+

196 Abinitialr[k][l][x][y]*Abinitialr[k][l][x][y] +

197 Abinitiali[k][l][x][y]*Abinitiali[k][l][x][y]; }

198

199 /* This serves as a check to ensure modes add up in the expected way */
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200

201 printf("P_00(tau = 0) = %g\n",Powerinitial[0][0]);

202

203

204

205 /* forming initial At @ tau = 0 ----------------------------------*/

206 for(i=0;i<10;i++)

207 for(x=0;x<nx;x++)

208 for(y=0;y<nx;y++) {

209 Atr[x][y] = Atr[x][y] + c[i]*Abinitialr[m[i]][n[i]][x][y];

210 Ati[x][y] = Ati[x][y] + c[i]*Abinitiali[m[i]][n[i]][x][y]; }

211

212 /* finding total power in At */

213

214 for(x=0;x<nx;x++)

215 for(y=0;y<nx;y++)

216 P0 = P0 + Atr[x][y]*Atr[x][y] + Ati[x][y]*Ati[x][y];

217

218 printf("P_T(0) = %g\n",P0);

219 printf("Outputting initial wavefront to file\n\n");

220

221 /* Output At cross section to file and saving old values*/

222

223 for(x=0;x<nx;x++) {

224 for(y=0;y<nx;y++) {

225 ampinitial = sqrt( Atr[x][y]*Atr[x][y] + Ati[x][y]*Ati[x][y] );

226 Atr_old[x][y] = Atr[x][y];

227 Ati_old[x][y] = Ati[x][y];

228 fprintf(initial, "%lf ",ampinitial); }

229 fprintf(initial, "\n"); }

230

231 /* Cmn calculation for initial waveform----------------------*/

232

233 printf("Calculating initial Cmns\n");

234

235 K = (2*dx*dx)/(pi*zo);

236 for(k=0;k<10;k++)

237 for(l=0;l<10;l++)

238 for(x=0;x<nx;x++)

239 for(y=0;y<nx;y++) {

240 cinitialr[k][l] = cinitialr[k][l] + K *

241 (Atr[x][y]*Abinitialr[k][l][x][y] +
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242 Ati[x][y]*Abinitiali[k][l][x][y]);

243

244 cinitiali[k][l] = cinitiali[k][l] + K *

245 (Ati[x][y]*Abinitialr[k][l][x][y] -

246 Atr[x][y]*Abinitiali[k][l][x][y]);}

247

248

249 /* calculating Cmn squared */

250 for(k=0;k<10;k++)

251 for(l=0;l<10;l++) {

252 c2maginitial[k][l] = (cinitialr[k][l]*cinitialr[k][l]+

253 cinitiali[k][l]*cinitiali[k][l]);

254 c2sumInitial = c2sumInitial + c2maginitial[k][l]; }

255

256 printf("\nNormalized initial cmn amplitudes squared\n");

257

258 for(k=0;k<10;k++)

259 for(l=0;l<10;l++) {

260 iS[k][l] = c2maginitial[k][l]/c2sumInitial;

261 if (iS[k][l] > 0.01) printf("Cmn2[%d][%d] = %g\n",k,l,iS[k][l]); }

262

263

264 /* propagation of At from tau = 0 to tau= 1 */

265

266 printf("\nPropagating waveform...\n\n");

267

268 for(tau=0.0;tau<=0.9999;tau=tau+dtau) {/* start tau loop */

269

270 /* wave equation over x,y and tau */

271 for(y=1;y<nx-1;y++)

272 for(x=1;x<nx-1;x++){

273 Atr[x][y] = Atr[x][y]-C*(Ati_old[x+1][y]+Ati_old[x-1][y]+

274 Ati_old[x][y+1]+Ati_old[x][y-1]-4.0*Ati_old[x][y]);

275

276 Ati[x][y] = Ati[x][y]+C*(Atr_old[x+1][y]+Atr_old[x-1][y]+

277 Atr_old[x][y+1]+Atr_old[x][y-1]-4.0*Atr_old[x][y]); }

278

279 /* saving old values */

280 for(x=0;x<nx;x++)

281 for(y=0;y<nx;y++){

282 Atr_old[x][y] = Atr[x][y];

283 Ati_old[x][y] = Ati[x][y]; }
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284

285 /* y vs. tau output */

286 if (count1==100) {

287 count1=0;

288 for(y=0;y<nx;y++) {

289 ampy = sqrt (Atr[nx/2][y]*Atr[nx/2][y] + Ati[nx/2][y]*Ati[nx/2][y]);

290 fprintf(ytau,"%g ",ampy); } }

291

292 fprintf(ytau,"\n");

293

294 count1 = count1 + 1; } /*end tau loop */

295

296 /* output for final waveform */

297 for(x=0;x<nx;x++) {

298 for(y=0;y<nx;y++){

299 ampfinal = sqrt( Atr[x][y]*Atr[x][y] + Ati[x][y]*Ati[x][y] );

300 fprintf(final,"%g ",ampfinal); }

301

302 fprintf(final,"\n"); }

303

304

305 /* Calculating cmns for final waveform (i.e., after propagation)----- */

306 /* Must create basis set at tau = 1.0 */

307

308 wf = sqrt( zo + (tau-tauw)*(tau-tauw)/zo );

309 printf("w(%g) = %g\n",tau,wf);

310

311

312 for(k=0;k<10;k++)

313 for(l=0;l<10;l++)

314 for(x=0;x<nx;x++)

315 for(y=0;y<nx;y++){

316 u = (sqrt(2)/wf)*(x - nx/2 + 0.5) * dx;

317 v = (sqrt(2)/wf)*(y - nx/2 + 0.5) * dx;

318 if (k==0) Hx=1.0;

319 if (k==1) Hx=2*u;

320 if (k==2) Hx=4*pow(u,2)-2;

321 if (k==3) Hx=8*pow(u,3)-12*u;

322 if (k==4) Hx=16*pow(u,4)-48*pow(u,2)+12;

323 if (k==5) Hx=32*pow(u,5)-160*pow(u,3)+120*u;

324 if (k==6) Hx=64*pow(u,6)-480*pow(u,4)+720*pow(u,2)-120;

325 if (k==7) Hx=128*pow(u,7)-1344*pow(u,5)+3360*pow(u,3)-1680*u;
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326 if (k==8) Hx=256*pow(u,8)-3584*pow(u,6)+13440*pow(u,4)-13440*

327 pow(u,2)+1680;

328 if (k==9) Hx=512*pow(u,9)-9216*pow(u,7)+48384*pow(u,5)-80640*

329 pow(u,3)+30240*u;

330 if (l==0) Hy=1.0;

331 if (l==1) Hy=2*v;

332 if (l==2) Hy=4*pow(v,2)-2;

333 if (l==3) Hy=8*pow(v,3)-12*v;

334 if (l==4) Hy=16*pow(v,4)-48*pow(v,2)+12;

335 if (l==5) Hy=32*pow(v,5)-160*pow(v,3)+120*v;

336 if (l==6) Hy=64*pow(v,6)-480*pow(v,4)+720*pow(v,2)-120;

337 if (l==7) Hy=128*pow(v,7)-1344*pow(v,5)+3360*pow(v,3)-1680*v;

338 if (l==8) Hy=256*pow(v,8)-3584*pow(v,6)+13440*pow(v,4)-13440*

339 pow(v,2)+1680;

340 if (l==9) Hy=512*pow(v,9)-9216*pow(v,7)+48384*pow(v,5)-80640*

341 pow(v,3)+30240*v;

342

343 rsq = ((x-nx/2+0.5)*(x-nx/2+0.5)+(y-nx/2+0.5)*(y-nx/2+0.5))*dx*dx;

344 phi = ( rsq*(tau-tauw)/(wo*wo*wf*wf)-(k+l+1)*atan((tau-tauw)/zo) );

345

346 Abfinalr[k][l][x][y] = Ao * wo * Hx * Hy * exp(-rsq/(wf*wf)) *

347 cos(phi)/wf*sqrt(1/(pow(2,k)*pow(2,l)*factorial(k)*factorial(l)));

348

349 Abfinali[k][l][x][y] = Ao * wo * Hx * Hy * exp(-rsq/(wf*wf)) *

350 sin(phi)/wf*sqrt(1/(pow(2,k)*pow(2,l)*factorial(k)*factorial(l)));

351

352 Powerfinal[k][l] = Powerfinal[k][l] +

353 Abfinalr[k][l][x][y]*Abfinalr[k][l][x][y] +

354 Abfinali[k][l][x][y]*Abfinali[k][l][x][y]; }

355

356 printf("P_00(1) = %g\n",Powerfinal[0][0]);

357

358 /* Finding total power in At at tau=1 *(should equal the tau=0 case)*/

359 for(x=0;x<nx;x++)

360 for(y=0;y<nx;y++)

361 P1 = P1 + Atr[x][y]*Atr[x][y] + Ati[x][y]*Ati[x][y];

362

363 printf("P_T(1) = %g\n", P1);

364

365 /* orthogonality calculation */

366 K = (2*dx*dx)/(pi*zo);

367 for(k=0;k<10;k++)
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368 for(l=0;l<10;l++)

369 for(x=0;x<nx;x++)

370 for(y=0;y<nx;y++) {

371 cfinalr[k][l] = cfinalr[k][l] + K *

372 (Atr[x][y]*Abfinalr[k][l][x][y] + Ati[x][y]*Abfinali[k][l][x][y]);

373

374 cfinali[k][l] = cfinali[k][l] + K *

375 (Ati[x][y]*Abfinalr[k][l][x][y] - Atr[x][y]*Abfinali[k][l][x][y]);}

376

377 /* calculating cmn squared */

378 for(k=0;k<10;k++)

379 for(l=0;l<10;l++) {

380 c2magfinal[k][l] = (cfinalr[k][l]*cfinalr[k][l] +

381 cfinali[k][l]*cfinali[k][l]);

382 c2sumFinal = c2sumFinal + c2magfinal[k][l];}

383

384 printf("\nNormalized initial cmn amplitudes squared\n");

385 for(k=0;k<10;k++)

386 for(l=0;l<10;l++) {

387 fS[k][l] = c2magfinal[k][l]/c2sumFinal;

388 if (fS[k][l] > 0.01) printf("Cmn2[%d][%d] = %g\n",k,l,fS[k][l]);}

389 printf("\n");

390 printf("\nClosing files...\n");

391 fclose(input);

392 fclose(initial);

393 fclose(final);

394 fclose(ytau);

395

396 } /*end main() */

397

398 int factorial(int a)

399 {

400 if ((a==1) || (a==0))

401 return 1;

402 else {

403 a *= factorial(a-1);

404 return a; } }

405 /* End of Cmn.c */
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2. CMN.IN { INPUT FILE
/* Begin input file */

1 1 0 2

2 1 2 0

3 0 0 2

4 0 4 0

5 0 0 4

6 0 2 7

7 0 4 9

8 0 3 8

9 0 5 3

10 0 0 6

11 1.0 10 100

12 0.5 1.0 400E-6

13 %c0 m0 n0

14 %c1 m1 n1

15 %c2 m2 n2

16 %c3 m3 n3

17 %c4 m4 n4

18 %c5 m5 n5

19 %c6 m6 n6

20 %c7 m7 n7

21 %c8 m8 n8

22 %c9 m9 n9

23 %Ao W nx

24 %zo tauw dtau

/* End input file */

3. COEFFS.M { MATLAB SCRIPT
1 close all

2 clear

3 clc

4 load initial.out

5 load final.out

6 load Cmn.in

7 load ytau.out;

8

9

10 ytau = ytau';

11 initial = initial';

12 final = final';
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13

14

15 W = Cmn(11,2);

16 nx = Cmn(11,3);

17 dtau = Cmn(12,3);

18 tau=0:dtau:1-dtau;

19 x = 0:1:nx-1;

20

21 [npx,timesteps] = size(ytau);

22 dtau = 1/timesteps;

23 tau = 0:dtau:1-dtau;

24 x = 0:1:npx-1;

25

26

27 [x_initial,y_initial]=meshgrid(0:W/nx:W-W/nx);

28 [x_final,y_final]=meshgrid(0:W/nx:W-W/nx);

29

30

31 figure('Color','white')

32 set(gca,'FontSize',25)

33 pcolor(x_initial,y_initial,initial)

34 colorbar

35 axis square

36 shading flat

37 shading interp

38 title('initial waveform')

39 xlabel('x')

40 ylabel('y')

41 colormap(hot)

42

43 figure('Color','white')

44 set(gca,'FontSize',25)

45 surf(initial)

46 title('initial surface plot')

47 xlabel('x')

48 ylabel('y')

49 zlabel('a_i*a_i')

50 colormap(hot)

51

52 figure('Color','white')

53 set(gca,'FontSize',25)

54 pcolor(x_final,y_final,final)
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55 xlabel('x')

56 ylabel('y')

57 colorbar

58 axis square

59 shading flat

60 shading interp

61 title('final waveform')

62 colormap(hot)

63

64 figure('Color','white')

65 set(gca,'FontSize',25)

66 surf(final)

67 xlabel('x')

68 ylabel('y')

69 zlabel('a_f*a_f*')

70 title('final surface plot')

71 colormap(hot)

72

73 figure('Color','white')

74 set(gca,'FontSize',25)

75 [Tau,X]=meshgrid(tau,x);

76 pcolor(Tau,X,ytau)

77 shading flat

78 shading interp

79 title('Laser amplitude y vs. \tau')

80 xlabel('\tau')

81 ylabel('x')

82 colormap(hot)
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APPENDIX B. USEFUL RELATIONS

Quick reference for some important equations

1. FREE ELECTRON LASER OVERVIEW

Resonance Condition � = �o
(K2+1)

22
Equation (II.1)

Gain G = P�Po
Po

Equation (II.2)

Extraction � =
Optical power

Initial electron beam power
Equation (II.3)

2. FREE ELECTRON LASER THEORY

Pendulum Equation
��
�= jaj cos(� + �) Equation (III.32)

Power P = jaj2 Equation (III.37)

FEL wave equation
h
� i

4
~r2

?
+ @

@�

i
a(~r; �) =< �je�i� > Equation (III.64)
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3. OPTICAL THEORY

F. Trial Solution a = aoe
�
�
p+ ~r2

~zoq

�
Equation (IV.3)

F. Solution a = ao
wo

w
e�

~r2

w2 e
i

�
~r2�

w2ow
2�arctan �

~zo

�
Equation (IV.20)

HOM Trial Solution a = aoghe
�(p+ ~r2

~zoq
) Equation (IV.24)

HG Mode Solution am;n = ao
wo

w
HmHne

� ~r2

w2 ei�m;n Equation (IV.45)

HOM Phase �m;n =
~r2�
w2
ow

2 � (m+ n+ 1) arctan �
~zo

Equation(IV.46)

Normalized HG mode Am;n =
1p

2m2nm!n!
am;n Equation (IV.60)

Total �eld HG AT =
P1

m;nCm;nAm;n Equation (IV.61)

Normalized Coe�cients Cm;n =
2

�a2ow
2
o

R1
�1
R1
�1AT

�
Am;n d~xd~y Equation (IV.66)

4. SIMULATIONS

Total Power in optical �eld PT = �
2
a2ow

2
o

P1
m;nC

2
m;n Equation (V.13)

Fractional Power Spectrum S[m][n] = C[m][n]2P
i;j C[i][j]

Equation (V.15)
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